Serotonin innervation of the primate suprachiasmatic nucleus.

Brain Res

Departments of Neurology and Neuroscience, University of Pittsburgh, 3471 Fifth Avenue, Suite 811, Pittsburgh, PA 15213, USA.

Published: June 2004

The suprachiasmatic nucleus (SCN) in rodents receives a dense innervation from serotonin neurons of the midbrain raphe. This projection overlaps the terminal field of the retinohypothalamic tract in the SCN core, the central part of the nucleus characterized by a population of vasoactive intestinal polypeptide (VIP)-containing neurons. To determine whether a similar pathway is present in primates, we carried out an immnunocytochemical investigation of the primate SCN using antisera against either serotonin (monkey) or the serotonin transporter (human). This demonstrated a dense serotonergic plexus over the SCN core in both species. As in rodents, the distribution of the serotonin innervation of the primate SCN overlaps that of the retinohypothalamic input and the VIP neuronal population. We also find a supraependymal plexus of serotonin axons in the third and lateral ventricles of the human and monkey brains that is similar in distribution, but less dense, than the one reported in rodents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2004.02.024DOI Listing

Publication Analysis

Top Keywords

serotonin innervation
8
innervation primate
8
suprachiasmatic nucleus
8
scn core
8
primate scn
8
serotonin
6
scn
5
primate suprachiasmatic
4
nucleus suprachiasmatic
4
nucleus scn
4

Similar Publications

Objectives: Sudden death in multiple system atrophy (MSA) is caused by decreased serotonergic innervation, but there is no routine test method for this decrease. In addition to dopamine transporters, iodine-123-labelled N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (I-FP-CIT) binds serotonin transporters (SERTs). We noted a binding potential to quantify the total quantity of I-FP-CIT binding to its receptors.

View Article and Find Full Text PDF

The claustrum is a small but densely interconnected brain structure that is innervated by axons containing serotonin (5-HT), a neuromodulator that has been implicated in control of sleep and in the actions of psychedelic drugs. However, little is known about how 5-HT influences the claustrum. We have combined whole-cell patch-clamp measurements of ionic currents, flash photolysis, and receptor pharmacology to characterize the 5-HT responses of individual claustral projection neurons (PNs) in mouse brain slices.

View Article and Find Full Text PDF

Preclinical data suggest that gestational exposure to selective serotonin reuptake inhibitors (SSRI) alter gut innervation, and delays colonic motility. In this study we investigated associations between gestational SSRI exposure and offspring disorders of gut-brain interaction (DGBI). Using population-based registries, we included all single-birth Danish children born 1997-2015 with follow-up until outcome occurrence, age 15 years, death, emigration, or December 2018.

View Article and Find Full Text PDF

Respiration is governed by a central rhythm and pattern generator, which has the pre-Bötzinger complex as the inspiratory oscillator initiating the coordinated activity of several respiratory muscles, including the diaphragm, intercostals, and upper airway muscles. The diaphragm is the main inspiratory pump muscle driving inflow, whereas dilator upper airway muscles, such as tongue muscles, reduce airway resistance during inspiration. Breathing exhibits a marked state-dependent pattern attributed to changes in neuromodulatory tone in respiratory-related brain regions, including decreases in noradrenaline and serotonin and increases in acetylcholine levels during rapid eye movement (REM) sleep.

View Article and Find Full Text PDF

Proprioceptive input is essential for coordinated locomotion and this input must be properly gated to ensure smooth and effective movement. Presynaptic inhibition mediated by GABAergic interneurons provides regulation of sensory afferent feedback. Serotonin not only promotes locomotion, but also modulates feedback from sensory afferents, both directly and indirectly, potentially by acting on the GABAergic interneurons that mediate presynaptic inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!