Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Alterations of neuronal Ca(2+) homeostatic mechanisms could be responsible for many of the cognitive deficits associated with aging in mammals. Mitochondrial participation in Ca(2+) signaling is now recognized as a prominent feature in neuronal physiology. We combined voltage-clamp electrophysiology with Ca(2+)-sensitive ratiometric microfluorimetry and laser scanning confocal microscopy to investigate the participation in Ca(2+) buffering of in situ mitochondria in acutely dissociated basal forebrain neurons from young and aged F344 rats. By pharmacologically blocking mitochondrial Ca(2+) uptake, we determined that mitochondria were not involved in rapid buffering of small Ca(2+) influx through voltage-gated Ca(2+) channels (VGCCs) in the somatic compartment. For larger Ca(2+) influx, aged mitochondria showed a significant buffering deficit. Evidence obtained with the potentiometric indicator, JC-1, suggests a significantly reduced mitochondrial membrane potential in aged neurons. These results support the interpretation that there is a fundamental difference in the way young and aged neurons buffer Ca(2+), and a corresponding difference in the quality of the Ca(2+) signal experienced by young and aged neurons for different intensities of cytoplasmic Ca(2+) influx.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2003.11.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!