Mutation and selection in a large population.

Biosystems

Centre for the Study of Evolution, School of Life Sciences, University of East Sussex, Brighton BN1 9QG, East Sussex, UK.

Published: December 2004

In this paper we study a large, but finite population, in which mutation and selection occur at a single genetic locus in a diploid organism. We provide theoretical results for the equilibrium allele frequencies, their variances and covariances and their equilibrium distribution, when the population size is larger than the reciprocal of the mean allelic mutation rate. We are also able to infer that the equilibrium distribution of allele frequencies takes the form of a constrained multivariate Gaussian distribution. Our results provide a rapid way of obtaining useful information in the case of complex mutation and selection schemes when the population size is large. We present numerical simulations to test the applicability of our theoretical formulations. The results of these simulations are in very reasonable agreement with the theoretical predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2003.12.004DOI Listing

Publication Analysis

Top Keywords

mutation selection
12
allele frequencies
8
equilibrium distribution
8
population size
8
mutation
4
selection large
4
population
4
large population
4
population paper
4
paper study
4

Similar Publications

Reduced function or hypomorphic variants in recombination-activating genes (RAG) 1 or 2 result in a broad clinical phenotype including common variable immunodeficiency (CVID) and even adult-onset disease. Milder RAG variants are less characterized. Here we describe the longitudinal course of a milder combined RAG deficiency in 3 of 7 siblings sharing the same RAG2 mutations over a 50-year study.

View Article and Find Full Text PDF

Total functioning capacity scale in Huntington's disease: natural course over time.

J Neurol

January 2025

LUMC Department of Neurology, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.

Background And Objectives: The total functioning capacity (TFC) assessment has been integral to Huntington's disease (HD) research and clinical trials, measuring disease stage and progression. This study investigates the natural progression of function in HD, focusing on changes in TFC scores related to age and CAG-repeat length, and evaluates TFC's strengths and weaknesses in longitudinal studies.

Methods: Using Enroll-HD platform's clinical dataset version 5, including Registry-3, we analysed data from 21,079 participants, with 16,083 having an expanded CAG repeat.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.

View Article and Find Full Text PDF

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.

Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!