The first heart sound is generated by vibrations from the myocardium during isovolumic contraction. Peak endocardial acceleration (PEA) has been used previously to measure these vibrations in humans and correlates with myocardial contractility during inotropic interventions. It is unknown if changes in PEA can be used to characterize a reduction in contractility during ischemic episodes. This study was designed to evaluate the use of an endocardial accelerometer for the detection of acute myocardial ischemia. Thirteen patients undergoing routine percutaneous transluminal coronary angioplasty (PTCA) consented to having a single-axis, lead-based accelerometer positioned in the right ventricular apex. PEA was defined as the maximum peak-to-peak amplitude during a window 50 ms before to 200 ms following the peak R wave. Time of endocardial acceleration (TEA) was defined as the time from the peak R wave to the maximum accelerometer signal within this window. To obtain a more robust estimate of the strength of vibrations, a 100-beat template of the accelerometer signal was constructed at baseline and applied as a matched filter during ischemia. The peak magnitude of the filtered endocardial accelerometer signal (Max Filtered EA) was used as an index of signal intensity. Median baseline PEA, TEA, and Max Filtered EA were 0.91 +/- 0.35 g, 75.2 +/- 16.2 ms, and 0.40 +/- 0.20 g, respectively. PEA and Max Filtered EA significantly decreased by 7% during ischemia (0.91 to 0.85 g and 0.40 to 0.37 g, both P < 0.05, respectively). TEA did not significantly change from baseline (77.0 ms, P = ns). The results of this study suggest that acute ischemia can be detected with an endocardial accelerometer in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1540-8159.2004.00496.xDOI Listing

Publication Analysis

Top Keywords

endocardial acceleration
12
endocardial accelerometer
12
accelerometer signal
12
max filtered
12
detection acute
8
acute myocardial
8
myocardial ischemia
8
percutaneous transluminal
8
transluminal coronary
8
coronary angioplasty
8

Similar Publications

Objective: The total examination time can be reduced if high-quality two-dimensional (2D) cine images can be collected post-contrast to minimize non-scanning time prior to late gadolinium-enhanced imaging. This study aimed to assess the equivalency of the pre-and post-contrast performance of 2D deep learning-based highly accelerated cardiac cine (DL cine) imaging by evaluating the image quality and the quantification of biventricular volumes and function in the clinical setting.

Material And Methods: Thirty patients (20 men, mean age 53.

View Article and Find Full Text PDF

Super-resolution left ventricular flow and pressure mapping by Navier-Stokes-informed neural networks.

Comput Biol Med

February 2025

Dept. of Mechanical Engineering, University of Washington, Seattle, WA, USA; Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA; Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA. Electronic address:

Intraventricular vector flow mapping (VFM) is an increasingly adopted echocardiographic technique that derives time-resolved two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic constraints arising from planar flow incompressibility. However, these models are not informed by crucial information about flow physics; most notably the forces within the fluid and the resulting accelerations.

View Article and Find Full Text PDF

Background: The development of coronary vessels in embryonic mouse heart involves various progenitor populations, including sinus venosus (SV), endocardium, and proepicardium. ELA/APJ signaling is known to regulate coronary growth from the SV, whereas VEGF-A/VEGF-R2 signaling controls growth from the endocardium. Previous studies suggest hypoxia might regulate coronary growth, but its specific downstream pathways are unclear.

View Article and Find Full Text PDF

Clinical utility of a rapid two-dimensional balanced steady-state free precession sequence with deep learning reconstruction.

J Cardiovasc Magn Reson

December 2024

Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Division of Cardiology, McGill University, Montreal, Quebec, Canada.

Background: Cardiovascular magnetic resonance (CMR) cine imaging is still limited by long acquisition times. This study evaluated the clinical utility of an accelerated two-dimensional (2D) cine sequence with deep learning reconstruction (Sonic DL) to decrease acquisition time without compromising quantitative volumetry or image quality.

Methods: A sub-study using 16 participants was performed using Sonic DL at two different acceleration factors (8× and 12×).

View Article and Find Full Text PDF

Intraventricular vector flow mapping (VFM) is a growingly adopted echocardiographic modality that derives time-resolved two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic constraints arising from planar flow incompressibility. However, these models are not informed by crucial information about flow physics; most notably the pressure and shear forces within the fluid and the resulting accelerations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!