Doxorubicin (DOX) is a DNA topoisomerase II inhibitor widely used in anticancer treatment, however, it can lead to irreversible cardiac damage with severe debilitation. TBP-binding associated factor 1 (TAF1) is increased in DOX damaged hearts in vivo and in cardiomyocytes in vitro. To identify the functional role for TAF1 in DOX-treated heart we overexpressed wild type and mutant TAF1 in H9c2 cells. Overexpression of wild-type TAF1, but not N-terminal kinase domain mutants, increased tolerance to DOX in confluent cells. DOX treatment can cause prolonged G1 arrest. We found increased cdk2 activity coupled to increased cyclin E protein and decreased p21(waf1Cip1) and p27(Kip1) protein to correlate only with increased DOX tolerance and wild-type TAF1. DOX sensitivity was restored when the cdk2-inhibitor Roscovitine was co-administered with DOX. Overexpression of cdk2-alone increased resistance to DOX. Thus, TAF1 induced DOX tolerance in confluent cells through an increase in cdk2 activity is directed by the TAF1 N-terminal domain. These studies suggest new avenues for myocardial protection against DOX toxicity and suggest a role for cdk2 in chemorefractory cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:mcbi.0000021347.65073.10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!