Olfactory placodes, that give rise to the olfactory and respiratory epithelia during ontogenesis, are a source of many neurons migrating into forebrain in the direction of growth of the olfactory nerves. The neurons expressing gonadotropin releasing hormone (GnRH) are among the best studied in the population in question. This hormone is responsible for the central regulation of reproduction in adult animals. It was already shown that, in addition to the GnRH-immunoreactive neurons, a small amount of neurons expressing tyrosine hydroxylase (TH), the first enzyme of catecholamine synthesis, migrates into the forebrain. Such a transient population of TH-immunoreactive neurons was shown by means of single and double immmunohistochemical labeling. The TH neurons were first found on branches of the olfactory, terminal, and vomeronasal nerves, along the trajectory of migration of GnRH-immunoreactive neurons on day 15 of embryogenesis, which preceded the appearance of GnRH-immunoreactive neurons. On days 17-21 of embryogenesis, both populations of neurons were found in almost the same areas and on day 21 single neurons contained both GnRH and TH. There were no neurons expressing decarboxylase of aromatic acids (DAA), the second enzyme of catecholamine synthesis, among TH-immunoreactive neurons, thus suggesting noncatecholaminergic nature of these neurons. However, single nonenzymatic DAA-immunoreactive neurons were found in the area of anterior olfactory nuclei in the forebrain, which suggests their involvement in local cooperative synthesis of catecholamines in the area where GnRH-immunoreactive neurons penetrate in the forebrain. Thus, the neurons expressing TH, TH and GnRH, and DAA were found in rats during prenatal period in the nasal part of the head along the nerves projecting into the forebrain and in the rostral part of forebrain. The origin and functional significance of these neurons are discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neurons expressing
20
neurons
17
gnrh-immunoreactive neurons
16
expressing tyrosine
8
tyrosine hydroxylase
8
enzyme catecholamine
8
catecholamine synthesis
8
th-immunoreactive neurons
8
neurons single
8
forebrain
7

Similar Publications

Background: Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss, Lewy body build-up, and motor dysfunction. One of the primary pathogenic mechanisms of PD development is autophagy dysfunction and nitric oxide-mediated neurotoxicity.

Purpose: The current study focuses on autophagy and nitric oxide (NO) signaling roles in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD mice and their protection by their modulators.

View Article and Find Full Text PDF

Background: Mitochondria, as the energy factories of cells, are involved in a wide range of vital activities, including cell differentiation, signal transduction, the cell cycle, and apoptosis, while also regulating cell growth. However, current pharmacological treatments for stroke are challenged by issues such as drug resistance and side effects, necessitating the exploration of new therapeutic strategies.

Objective: This review aims to summarize the regulatory effects of natural compounds targeting mitochondria on neuronal mitochondrial function and metabolism, providing new perspectives for stroke treatment.

View Article and Find Full Text PDF

In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.

View Article and Find Full Text PDF

Dopaminergic neurodegeneration in cultivated with .

MicroPubl Biol

January 2025

Natural Sciences, Converse University, Spartanburg, South Carolina, United States.

Disruption of the human microbiome has emerged as a major contributing factor in the etiology of neurodegenerative disease. Previous work suggests a positive correlation between periodontal inflammation and Parkinson's disease. Here, we show that feeding animals causes neurodegeneration that is not additive with neurodegeneration induced by the Parkinson's-associated protein, α-synuclein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!