1,1-Dichloroethylene (DCE) exposure evokes lung toxicity with selective damage to bronchiolar Clara cells. Recent in vitro studies have implicated CYP2E1 and CYP2F2 in the bioactivation of DCE to 2-S-glutathionyl acetate [C], a putative conjugate of DCE epoxide with glutathione. An objective of this study was to test the hypothesis that bioactivation of DCE is catalyzed by both CYP2E1 and CYP2F2 in murine lung. Western blot analysis of lung microsomal proteins from DCE-treated CD-1 mice showed time-dependent loss of immunodetectable CYP2F2 and CYP2E1 protein. Dose-dependent formation of conjugate [C] was observed in the lungs of CD-1 mice treated with DCE (75-225 mg/kg), but it was not detected after pretreatment with 5-phenyl-1-pentyne (5-PIP). Treatment of mice with 5-PIP and also with diallyl sulfone (DASO2) significantly inhibited hydroxylation of p-nitrophenol (PNP) and chlorzoxazone (CHZX). Incubation of recombinant CYP2F3 (a surrogate for CYP2F2) and recombinant CYP2E1 with PNP and CHZX confirmed that they are substrates for both of the recombinant enzymes. Incubation of the recombinant enzymes with DASO2 or 5-PIP significantly inhibited hydroxylation of both PNP and CHZX. Bronchiolar injury was elicited in CD-1 mice treated with DCE (75 mg/kg), but it was abrogated with 5-PIP pretreatment. Bronchiolar toxicity also was manifested in the lungs of CYP2E1-null and wild-type mice treated with DCE (75 mg/kg), but protection ensued after pretreatment with 5-PIP or DASO2. These results showed that bioactivation of DCE in murine lung occurred via the catalytic activities of both CYP2E1 and CYP2F2 and that bioactivation by these enzymes mediated the lung toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.104.068171DOI Listing

Publication Analysis

Top Keywords

cyp2e1 cyp2f2
16
murine lung
12
bioactivation dce
12
cd-1 mice
12
mice treated
12
treated dce
12
cyp2f2 murine
8
dce
8
lung toxicity
8
cyp2f2 bioactivation
8

Similar Publications

Tissue distribution and characterization of feline cytochrome P450 genes related to polychlorinated biphenyl exposure.

Comp Biochem Physiol C Toxicol Pharmacol

December 2019

Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan. Electronic address:

Cats have been known to be extremely sensitive to chemical exposures. To understand these model species' sensitivity to chemicals and their toxicities, the expression profiles of xenobiotic-metabolizing enzymes should be studied. Unfortunately, the characterization of cytochrome P450 (CYP), the dominant enzyme in phase I metabolism, in cats has not extensively been studied.

View Article and Find Full Text PDF

Atrazine (ATR) is primarily distributed in liver and hazardous to animal health. Cytochrome P450 enzyme system (CYP450s) is responsible for the biotransformation of toxic substances. Lycopene (LYC) prevents the herbicide-induced toxicity.

View Article and Find Full Text PDF

Olfactory mucosal necrosis in rats following acute intraperitoneal administration of 1,2-diethylbenzene, 1,2-diacetylbenzene and 2,5-hexanedione.

Neurotoxicology

March 2014

Département Polluants et Santé, Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519, Vandoeuvre lès Nancy cedex, France.

1,2-Diethylbenzene (1,2-DEB) is used in the manufacture of some plastics. Exposure to 1,2-DEB has been shown to induce peripheral neuropathy in rats. This neurotoxicity is thought to be caused by a metabolite, 1,2-diacetylbenzene (1,2-DAB), a γ-diketone-like compound.

View Article and Find Full Text PDF

Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.

View Article and Find Full Text PDF

Styrene causes toxicity in both the lung and the liver. The study of the relationship of this toxicity to the metabolism of styrene has been aided by the use of knockout mice for both bioactivation and detoxification pathways. It has been hypothesized that CYP2E1 is primarily responsible for styrene bioactivation in mouse liver and CYP2F2 in mouse lung.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!