Saccharomyces cerevisiae responds to iron deprivation by increased transcription of the iron regulon, including the high affinity cell-surface transport system encoded by FET3 and FTR1. Here we demonstrate that transcription of these genes does not respond directly to cytosolic iron but rather to the mitochondrial utilization of iron for the synthesis of iron-sulfur (Fe-S) clusters. We took advantage of a mutant form of an iron-dependent enzyme in the sterol pathway (Erg25-2p) to assess cytosolic iron levels. We showed that disruption of mitochondrial Fe-S biosynthesis, which results in excessive mitochondrial iron accumulation, leads to transcription of the iron transport system independent of the cytosolic iron level. There is an inverse correlation between the activity of the mitochondrial Fe-S-containing enzyme aconitase and the induction of FET3. Regulation of transcription by Fe-S biosynthesis represents a mechanism by which cellular iron acquisition is integrated with mitochondrial iron metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M403209200 | DOI Listing |
Discov Oncol
January 2025
Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.
Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).
Environ Geochem Health
January 2025
Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.
Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.
J Exp Bot
January 2025
Dept. of Plant Science and Crop Protection, University of Nairobi, P.O Box 29053-00625, Nairobi, Kenya.
Micronutrient malnutrition is one of the most serious health challenges facing vast sectors of Africa's population particularly resource-poor women and children. Main deficiencies include iron, zinc and vitamin A. Plant breeding has frequently been advocated as the most sustainable strategy of providing varieties of different food crop species with enhanced micronutrient density to combat the global hidden hunger problem which affects more than 2 billion people.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Defluorination reactions are increasingly vital due to the extensive use of organofluorine compounds with robust carbon-fluorine (C-F) bonds; particularly, the efficient defluorination of widespread and persistent per- and polyfluoroalkyl substances under mild conditions is crucial due to their accumulation in the environment and human body. Herein, we demonstrate that surface-modified silicate of pronounced proton affinity can confine active hydrogen (•H) onto nanoscale zerovalent iron (nZVI) by withdrawing electrons from nZVI to react with bound protons, generating confined active hydrogen (•H) for efficient defluorination under ambient conditions. The exposed silicon cation (Si) of silicate functions as a Lewis acid site to activate the C-F bond by forming Si.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!