A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis. | LitMetric

Polyketide-associated protein A5 (PapA5) is an acyltransferase that is involved in production of phthiocerol and phthiodiolone dimycocerosate esters, a class of virulence-enhancing lipids produced by Mycobacterium tuberculosis. Structural analysis of PapA5 at 2.75-A resolution reveals a two-domain structure that shares unexpected similarity to structures of chloramphenicol acetyltransferase, dihydrolipoyl transacetylase, carnitine acetyltransferase, and VibH, a non-ribosomal peptide synthesis condensation enzyme. The PapA5 active site includes conserved histidine and aspartic acid residues that are critical to PapA5 acyltransferase activity. PapA5 catalyzes acyl transfer reactions on model substrates that contain long aliphatic carbon chains, and two hydrophobic channels were observed linking the PapA5 surface to the active site with properties consistent with these biochemical activities and substrate preferences. An additional alpha helix not observed in other acyltransferase structures blocks the putative entrance into the PapA5 active site, indicating that conformational changes may be associated with PapA5 activity. PapA5 represents the first structure solved for a protein involved in polyketide synthesis in Mycobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M404011200DOI Listing

Publication Analysis

Top Keywords

active site
12
papa5
10
mycobacterium tuberculosis
8
papa5 acyltransferase
8
papa5 active
8
activity papa5
8
crystal structure
4
structure papa5
4
papa5 phthiocerol
4
phthiocerol dimycocerosyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!