Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Matrix metalloproteinases (MMPs) are enzymes involved in the proteolytic degradation of extracellular matrix. They play an important role in several disease processes, such as inflammation, cancer, and atherosclerosis.
Methods And Results: In this study, we have used the broad-spectrum MMP inhibitor CGS 27023A to develop the radioligand [123I]I-HO-CGS 27023A for in vivo imaging of MMP activity. Using this radioligand, we were able to specifically image MMP activity by scintigraphy in vivo in the MMP-rich vascular lesions that develop after carotid artery ligation and cholesterol-rich diet in apolipoprotein E-deficient mice. These results were confirmed by gamma counting of lesional tissue (counts per minute per milligram).
Conclusions: Imaging of MMP activity in vivo is feasible using radiolabeled MMP inhibitors. Additional studies are needed to test the potential of this approach as a novel noninvasive clinical diagnostic tool for the management of human MMP-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000129088.49276.83 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!