Unfolding-refolding of Escherichia coli DsbC, a homodimeric molecule, induced by GdnHCl was studied by intrinsic fluorescence. Interpretation of experimental fluorescence data was done together with the analysis of protein 3D structure. It is shown that although Cys 141 is the next neighbor of the single tryptophan residue (Trp 140), the sulfur atoms of the disulfide bond Cys 141-Cys 163 are far apart from the indole ring and cannot quench its fluorescence, while the potential quenchers are Met 136 and His 170. It was revealed that though each subunit of DsbC contains eight tyrosine residues, only three tyrosine residues (Tyr 171, Tyr 38, and Tyr 52) contribute to the bulk fluorescence of the molecule. The character of intrinsic fluorescence intensity changes induced by GdnHCl (equilibrium and kinetic data) and its parametric representation, the existence of an isosbestic point of fluorescence spectra at different GdnHCl concentrations, allowed suggesting a one-step character of DsbC denaturation and its reversibility.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0359325DOI Listing

Publication Analysis

Top Keywords

induced gdnhcl
12
intrinsic fluorescence
12
molecule induced
8
tyrosine residues
8
fluorescence
7
conformational change
4
change dimeric
4
dsbc
4
dimeric dsbc
4
dsbc molecule
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!