Cyanide is one of the few diatomic ligands able to interact with the ferric and ferrous heme-Fe atom. Here, the X-ray crystal structure of the cyanide derivative of ferric Mycobacterium tuberculosis truncated hemoglobin-N (M. tuberculosis trHbN) has been determined at 2.0 A (R-general = 17.8% and R-free = 23.5%), and analyzed in parallel with those of M. tuberculosis truncated hemoglobin-O (M. tuberculosis trHbO), Chlamydomonas eugametos truncated hemoglobin (C. eugametos trHb), and sperm whale myoglobin, generally taken as a molecular model. Cyanide binding to M. tuberculosis trHbN is stabilized directly by residue TyrB10(33), which may assist the deprotonation of the incoming ligand and the protonation of the outcoming cyanide. In M. tuberculosis trHbO and in C. eugametos trHb the ligand is stabilized by the distal pocket residues TyrCD1(36) and TrpG8(88), and by the TyrB10(20) - GlnE7(41) - GlnE11(45) triad, respectively. Moreover, kinetics for cyanide binding to ferric M. tuberculosis trHbN and trHbO and C. eugametos trHb, for ligand dissociation from the ferrous trHbs, and for the reduction of the heme-Fe(III)-cyanide complex have been determined, at pH 7.0 and 20.0 degrees C. Despite the different heme distal site structures and ligand interactions, values of the rate constant for cyanide binding to ferric (non)vertebrate heme proteins are similar, being influenced mainly by the presence in the heme pocket of proton acceptor group(s), whose function is to assist the deprotonation of the incoming ligand (i.e., HCN). On the other hand, values of the rate constant for the reduction of the heme-Fe(III)-cyanide (non)vertebrate globins span over several orders of magnitude, reflecting the different ability of the heme proteins considered to give productive complex(es) with dithionite or its reducing species SO(2)(-). Furthermore, values of the rate constant for ligand dissociation from heme-Fe(II)-cyanide (non)vertebrate heme proteins are very different, reflecting the different nature and geometry of the heme distal residue(s) hydrogen-bonded to the heme-bound cyanide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi049870+ | DOI Listing |
J Biol Chem
January 2025
Department of Chemistry, The University of Texas at San Antonio, Texas 78249, United States. Electronic address:
MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-L-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Millipedes have long been known to produce structurally diverse chemical defenses, including hydrogen cyanide, terpenoid alkaloids, and oxidized aromatics. Although the hydrogen cyanide and oxidized aromatic producing millipedes have been well studied, less than 10% of the terpenoid alkaloid producers have been chemically investigated. Several previous studies have shown that alkaloids disorient predators, but their biochemical target is currently unknown.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Otorhinolaryngology, No. 971 Hospital of People's Liberation Army Navy, Qingdao 266000, Shandong Province, China.
Hearing loss (HL) is an otolaryngology disease susceptible to environmental pollutants. Volatile organic compounds (VOCs), as a class of chemical pollutants with evaporation propensity, pose a great threat to human health. However, the association between VOCs and HL remains unclear.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
The applications of nanomaterials in regenerative medicine encompass a broad spectrum. The functional nanomaterials, such as Prussian blue and its derivative nanoparticles, exhibit potent anti-inflammatory and antioxidant properties. By combining it with the corresponding scaffold carrier, the fusion of nanomaterials and biotherapy can be achieved, thereby providing a potential avenue for clinical treatment.
View Article and Find Full Text PDFMicrob Pathog
February 2025
Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. Electronic address:
Aeromonas schubertii infections has caused severe economic losses in aquaculture in China. In this study, we first induced enrofloxacin (ENR) resistance in A. schubertii strains and then analyzed the mechanisms of drug resistance using transcriptomics and metabolomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!