MRP1 and glucosylceramide are coordinately over expressed and enriched in rafts during multidrug resistance acquisition in colon cancer cells.

Int J Cancer

Department of Membrane Cell Biology, Groningen University Institute for Drug Exploration (GUIDE), University of Groningen, Groningen, The Netherlands.

Published: July 2004

Previously we have described a novel multidrug-resistant cell line, HT29(col), which displayed over expression of the multidrug-resistance protein 1 (MRP1) and an altered sphingolipid composition, including enhanced levels of glucosylceramide (GlcCer; Kok JW, Veldman RJ, Klappe K, Koning H, Filipeanu C, Muller M. Int J Cancer 2000;87:172-8). In our study, long-term screening revealed that, during colchicine-induced acquisition of multidrug resistance in a new HT29(col) cell line, increases in GlcCer occurred concomitantly with upregulation of MRP1 expression. Both MRP1 and GlcCer were found enriched in Lubrol-insoluble membrane domains. The expression of MRP1 and GlcCer were tightly correlated, as indicated also by a reversal of both at the later stage of colchicine consolidation. Resistance to colchicine was determined by MRP1, while glucosylceramide synthase (GCS) did not contribute: 1). Resistance was fully inhibited by MK571. 2). GCS expression and activity were not upregulated in HT29(col) cells. 3). Inhibition of GCS did not affect MRP1-mediated efflux function or sensitivity to colchicine. Instead, overall sphingolipid metabolism was upregulated through an increased rate of ceramide biosynthesis. In conclusion, upregulation of MRP1 occurs in concert with upregulation of GlcCer during multidrug-resistance acquisition, and both are enriched in rafts. The increased GlcCer pool does not directly modulate MRP1 function and cell survival.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.20140DOI Listing

Publication Analysis

Top Keywords

mrp1
8
mrp1 glucosylceramide
8
enriched rafts
8
multidrug resistance
8
upregulation mrp1
8
expression mrp1
8
mrp1 glccer
8
glccer
6
glucosylceramide coordinately
4
coordinately expressed
4

Similar Publications

Protein abundance of drug transporters and drug-metabolizing enzymes in paired healthy and tumor tissue from colorectal cancer patients.

Int J Pharm

January 2025

Drug Delivery and Disposition, KU Leuven, Gasthuisberg ON2, Herestraat 49 - box 921, 3000 Leuven, Belgium. Electronic address:

The widespread prevalence of colorectal cancer and its high mortality rate emphasize the urgent need for more effective therapies. When developing new drug products, a key aspect is ensuring that sufficiently high concentrations of the active drug are reached at the site of action. Drug transporters and drug-metabolizing enzymes can significantly influence the absorption and local accumulation of drugs in intestinal tissue.

View Article and Find Full Text PDF

Protective role of ABCC drug subfamily resistance transporters (ABCC1-7) in intestinal inflammation.

Immunol Res

January 2025

Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico.

The ABCC subfamily contains thirteen members. Nine of these transporters are called multidrug resistance proteins (MRPs). The MRPs have been associated with developing ulcerative colitis (UC).

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

Cyclic nucleotide GMP-AMP (cGAMP) plays a critical role in mediating the innate immune response through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Recent studies showed that ATP-binding cassette subfamily C member 1 (ABCC1) is a cGAMP exporter. The exported cGAMP can be imported into uninfected cells to stimulate a STING-mediated innate immune response.

View Article and Find Full Text PDF

Combating cisplatin-resistant lung cancer using a coiled-coil lipopeptides modified membrane fused drug delivery system.

J Control Release

January 2025

State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China. Electronic address:

Drug resistance to chemotherapy in treating cancers becomes an increasingly serious challenge, which leads to treatment failure and poor patient survival. Drug-resistant cancer cells normally reduce intracellular accumulation of drugs by controlling drug uptake and promoting drug efflux, which severely limits the efficacy of chemotherapy. To overcome this problem, a membrane fused drug delivery system (MF-DDS) was constructed to treat cisplatin (DDP)-resistant lung cancer (A549-DDP) by delivering DDP via membrane fusion using a complementary coiled-coil forming peptides (CPK/CPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!