Phosphatase under-producer mutants have altered phosphorus relations.

Plant Physiol

Intercollege Program in Plant Physiology, Penn State University, University Park, Pennsylvania 16802, USA.

Published: May 2004

Phosphorus (P) acquisition and partitioning are essential for plant homeostasis. P is available for plant uptake when in its inorganic form (H2PO4-, or Pi), but Pi is often limiting in soils. Plants secrete acid phosphatases (APases) into the apoplastic space, which may be important for obtaining Pi from organic P sources; however, the relative importance of these enzymes for plant P nutrition has yet to be determined. We demonstrate that the root-associated APase pool is increased in Arabidopsis when Pi is limiting and document five APase isoforms secreted from Arabidopsis roots. Previously, we presented the identification of the phosphatase under-producer (pup) mutants, which have decreased in vivo root APase staining when grown under low P conditions. Here, we present the characterization of one of these, pup3, and further studies with pup1. pup3 has 49%, 38%, and 37% less specific APase activity in exudates, roots, and shoots, respectively. Root-associated APase activity is decreased by 16% in pup1 and 25% in pup3, regardless of P treatment. Two APase activity isoforms are reduced in pup3 exudates, and root and shoot isoforms are also affected. One of the two exudate isoforms is recognized by a polyclonal antibody raised to an Arabidopsis purple APase recombinant protein (AtPAP12); however, AtPAP12 transcript levels are unaffected in the mutant. The pup3 mutation was mapped to 68.4 +/- 6.0 centimorgans on chromosome 5. Although P concentrations were not altered in pup1 and pup3 tissues when grown in nutrient solution in which Pi was the sole source of P, the mutants had 10% (pup1) and 17% (pup3) lower shoot P concentrations when grown in a peat-vermiculite mix in which the majority of the total P was present as organic P. Therefore, the pup defects, which include secreted APases, are functionally important for plant P nutrition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC429387PMC
http://dx.doi.org/10.1104/pp.103.036459DOI Listing

Publication Analysis

Top Keywords

apase activity
12
phosphatase under-producer
8
plant nutrition
8
root-associated apase
8
pup1 pup3
8
apase
7
pup3
7
under-producer mutants
4
mutants altered
4
altered phosphorus
4

Similar Publications

A Phosphate-Starvation Enhanced Purple Acid Phosphatase, GmPAP23 Mediates Intracellular Phosphorus Recycling and Yield in Soybean.

Plant Cell Environ

January 2025

Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.

Plant internal phosphorus (P) recycling is a complex process, which is vital for improving plant P use efficiency. However, the mechanisms underlying phosphate (Pi) release from internal organic-P form remains to be deciphered in crops. Here, we functionally characterised a Pi-starvation responsive purple acid phosphatase (PAP), GmPAP23 in soybean (Glycine max).

View Article and Find Full Text PDF
Article Synopsis
  • * BnaPAP17s play a crucial role in utilizing organic phosphorus by converting it to inorganic phosphorus, which is essential for plant growth in nutrient-deficient soils.
  • * Experimental evidence shows that overexpressing BnaPAP17s boosts APase activity, leading to higher phosphorus uptake when ATP is the only phosphorus source, indicating their importance for increasing nutrient efficiency in plants.
View Article and Find Full Text PDF

Biotic regulation of phoD-encoding gene bacteria on organic phosphorus mineralization in lacustrine sediments with distinct trophic levels.

Water Res

August 2024

State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China. Electronic address:

Organic phosphorus (Po) mineralization hydrolyzed by alkaline phosphatase (APase) can replenish bioavailable P load in the sediment water ecosystem of lakes. However, the understanding about the interaction between P load and bacteria community encoding APase generation in the sediment are still limited. Different P pools in the sediments from Taihu Lake, China were measured using sequential extraction procedure.

View Article and Find Full Text PDF

Legume crops establish symbiosis with nitrogen-fixing rhizobia for biological nitrogen fixation (BNF), a process that provides a prominent natural nitrogen source in agroecosystems; and efficient nodulation and nitrogen fixation processes require a large amount of phosphorus (P). Here, a role of GmPAP4, a nodule-localized purple acid phosphatase, in BNF and seed yield was functionally characterized in whole transgenic soybean () plants under a P-limited condition. was specifically expressed in the infection zones of soybean nodules and its expression was greatly induced in low P stress.

View Article and Find Full Text PDF
Article Synopsis
  • Oilseed rape (Brassica napus) is a major oil crop that struggles with low phosphorus availability, which is often found in organic forms in the soil.
  • The study examines the relationship between root-secreted acid phosphatases (APase) and root traits to understand how different B. napus genotypes acquire phosphorus under low availability.
  • Key findings indicate that while seed yield correlates with total root-secreted APase activity, trade-offs exist in root traits influencing phosphorus acquisition strategies among different genotypes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!