Background: 1,1,1,2 Tetrafluoroethane is a hydrofluoroalkane (HFA) that is replacing chlorofluorocarbons (CFC) as a medical aerosol propellant in an attempt to reduce damage to the ozone layer. This study compared the effects of HFA- and CFC-based inhalers on four anaesthetic gas monitoring systems.
Methods: The HFA- and CFC-based inhalers were activated in close proximity to the sample line of two Datex Ohmeda, an Agilent and a Siemens infrared anaesthetic agent monitoring systems. The effects were recorded on each system for five common anaesthetic agents.
Results: The HFA inhaler caused either maximal false positive readings (with the exception of desflurane) or transient measurement failure on all systems. The Datex Ohmeda AS/3 system misidentified the HFA inhaler as carbon dioxide at low concentration (2 +/- 0 mm Hg). The CFC-based inhaler caused a minor false-positive reading (0.4 +/- 0%) for halothane only on the Datex Ohmeda AS/3 system only and was misidentified as carbon dioxide at 33.3 (sd 2.1) mm x Hg and 22.4 (8.9) mm x Hg by the Agilent and Siemens systems.
Conclusions: The HFA inhaler adversely affected all equipment tested. The infrared spectra of HFA and the common anaesthetic gases have considerable overlap at the 8-12 microm range that is not shared by the CFCs. The differences in spectral overlap explain the different effects of the HFA and CFC propellants. Anaesthetic gas concentration data may be erroneous using the HFA-based inhalers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bja/aeh154 | DOI Listing |
Sci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFJ Clin Anesth
January 2025
Department of Anesthesiology, Pain Management, & Perioperative Medicine, Henry Ford Health, Detroit, MI, USA. Electronic address:
Life (Basel)
December 2024
Division of Thoracic Surgery, IRCCS Azienda Ospedaliero Universitaria Di Bologna, Via Albertoni 15, 40138 Bologna, Italy.
(1) Background: Ex Vivo Lung Perfusion (EVLP) is a technique designed to assess and recondition marginal lungs, potentially expanding the donor pool and improving transplant outcomes (2) Methods: This retrospective study evaluated lung transplantation outcomes after EVLP. Donor lungs were assessed using the Toronto protocol, with data on hemodynamics, gas exchange, and perfusion parameters collected and analyzed. Post-transplant complications and survival rates were also examined.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Restorative Dentistry - Endodontics, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.
Objectives: To investigate volumetric changes, in vivo biocompatibility, and systemic migration from eight commercial endodontic sealer materials in paste/paste, powder/liquid, and pre-mixed forms.
Materials And Methods: The sealers AH Plus Bioceramic, AH Plus Jet, BioRoot RCS, MTApex, Bio-C Sealer, Bio-C Sealer Ion+, EndoSequence BC Sealer and NeoSEALER Flo were studied. After characterisation by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and X-ray diffractometry (XRD), tubes were implanted in Wistar rats' alveolar bone and subcutaneous tissues.
Eur J Trauma Emerg Surg
January 2025
Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
Purpose: In patients with traumatic brain injury (TBI), adequate oxygenation is crucial to optimize survival and neurological outcome. However, supranormal oxygen partial pressure (PaO) only leads to minor increase in cerebral oxygen delivery but can cause numerous pathophysiological disturbances. Therefore, we aimed to study effects of hyperoxia on patient outcome and identify optimum PaO ranges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!