The inhalation route is widely studied for many drug applications focusing on either local or systemic distributions. One matter of concern is the solubilization of hydrophobic drugs. We have studied the feasibility of using different cyclodextrins (CDs) to elaborate pharmaceutical formulations for the inhalation route and tested the short-term toxicity of such formulations administered by inhalation to C57BL/6 mice. We have shown that HP-beta-CD, gamma-CD, as well as RAMEB aqueous solutions can undergo aerosolization and that the resulting droplet-size ranges are compatible with pulmonary deposition. In vivo, we have demonstrated that short-term exposure to inhaled HP-beta-CD, gamma-CD and RAMEB solutions are non-toxic after assessing bronchoalveolar lavage (BAL), lung and kidney histology, bronchial responsiveness to methacholine and blood urea. The only change noted is a slight increase in lymphocyte count in the BAL after HP-beta-CD and gamma-CD inhalation. We conclude that CDs are useful in significantly enhancing the solubility of apolar drugs with a view to inhalation therapy although an increase in lymphocyte counts in the BAL after CDs inhalations needs further investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2004.02.010 | DOI Listing |
Int J Mol Sci
November 2024
School of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
Four cyclodextrins (CDs) including heptakis-O-(2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), heptakis-O-(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), β-cyclodextrin (β-CD), and γ-cyclodextrin (γ-CD) were evaluated for their ability to enhance the aqueous solubility of kaempferol (Kae). Phase solubility studies indicated that these four CDs can form 1:1 type complexes with Kae and that HP-β-CD demonstrated the most significant solubilizing effect on Kae. Among the CDs tested, HP-β-CD demonstrated the most significant solubilizing effect on Kae.
View Article and Find Full Text PDFSci Adv
November 2024
Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA.
Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore.
View Article and Find Full Text PDFACS Appl Bio Mater
August 2024
Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States.
Quercetin, recognized for its antioxidant, anti-inflammatory, and antibacterial properties, faces limited biomedical application due to its low solubility. Cotton, a preferred wound dressing material over synthetic ones, lacks inherent antibacterial and wound-healing attributes and can benefit from quercetin features. This study explores the potential of overcoming these challenges through the inclusion complexation of quercetin with cyclodextrins (CDs) and the development of a nanofibrous coating on a cotton nonwoven textile.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2024
School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. Electronic address:
Molecules
May 2024
Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
In aqueous and solid media, 2-HP-β/γ-CD inclusion complexes with poly aromatic hydrocarbon (PAH) Phenanthrene (PHN), Anthracene (ANT), Benz(a)pyrene (BaP), and Fluoranthene (FLT) were investigated for the first time. The inclusion complexes were characterized and investigated using fluorescence and HNMR spectroscopy. The most prevalent complexes consisting of both guests and hosts were those with a 1:1 guest-to-host ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!