Phytosterols decrease prostaglandin release in cultured P388D1/MAB macrophages.

Prostaglandins Leukot Essent Fatty Acids

Department of Exercise and Nutrition Sciences, University of Buffalo, 15 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA.

Published: June 2004

Cardiovascular disease (CVD) remains the leading cause of death in Western societies. Atherosclerosis is a major cardiovascular related disorder that is responsible for 50% of all mortality in the United States. Several epidemiological studies suggest that consumption of a plant-based diet is associated with a decreased incidence of cardiovascular abnormalities. Phytosterols, especially beta-sitosterol, are plant sterols that have been shown to exert protective effects against cardiovascular diseases as well as many types of cancer. Monocyte/macrophage cells are involved with the inflammatory process. Accumulation of these cells in arteries is one of the initial events leading to atherosclerosis. Macrophages are capable of supplying the atherosclerotic vessel with substantial amounts of prostaglandins. Prostaglandins have been shown by numerous studies to play a key role in the atherosclerosis process. They can affect platelet aggregation, vasodilation or constriction of blood vessels, and the adherence of monocytes to the vessel walls. The purpose of this study was to examine the effect of phytosterols on the release of PGE(2) and PGI(2) from lipopolysaccharide (LPS)-stimulated P388D(1)/MAB macrophage cells. P388D(1)/MAB cells were supplemented with 16 microM cholesterol, beta-sitosterol or campesterol using cyclodextrin as a vehicle. Phytosterol supplementation led to a significant decrease in cellular growth at various time points throughout a 7-day treatment period, especially after 3 days of treatment. Macrophages incorporated the supplemented phytosterols into their membranes which accounted for 26% of total membrane sterols. Cholesterol supplementation at 16 microM however, had no effect on membrane sterols. Supplementation with 16 microM concentration of beta-sitosterol or campesterol resulted in a significant inhibition of PGE(2) and PGI(2) release from macrophage cells as compared to the vehicle control. Of the two phytosterols, beta-sitosterol supplementation exhibited a greater inhibitory effect. PGE(2) release was decreased 68% by beta-sitosterol and 55% by campesterol, while cholesterol supplementation was not as effective, as it led to a 37% decrease. Similarly, release of PGI(2) from macrophages was inhibited 67% by beta-sitosterol and 52% by campesterol treatment, while enrichment of the cells with cholesterol, led to a 35% decrease in PGI(2) release. The decrease in prostaglandin release was not due to alteration in the expression of cPLA(2) and COX-2 enzymes which suggests that alterations in the activities of these enzymes may be responsible for the observed changes in prostaglandin release. It was concluded that phytosterol incorporation into macrophages may offer protection from atherosclerosis by reducing their prostaglandin release and thus slowing down the atheroma development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plefa.2003.11.005DOI Listing

Publication Analysis

Top Keywords

prostaglandin release
16
release
9
decrease prostaglandin
8
phytosterols beta-sitosterol
8
pge2 pgi2
8
macrophage cells
8
beta-sitosterol campesterol
8
membrane sterols
8
cholesterol supplementation
8
supplementation microm
8

Similar Publications

The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.

View Article and Find Full Text PDF

Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention.

Front Pharmacol

December 2024

Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF

Biomarkers in the diagnosis of mast cell activation.

Curr Opin Allergy Clin Immunol

February 2025

Division of Allergic Diseases, Mayo Clinic Rochester, Rochester, Minnesota, USA.

Purpose Of Review: Mast cell activation is defined by activation of mast cells by varying stimuli with release of chemical mediators either through degranulation or release of de novo synthesized proteins or lipid mediators. Currently, tryptase measurement increase during symptomatic episodes is the most accepted biomarker measurement for mast cell activation. However, newer diagnostic tools including clinically available urinary mast cell mediators are noninvasive and can be more readily obtained compared to serum tryptase levels.

View Article and Find Full Text PDF

PGE and HCN2 ion channels are critical mediators of pain initiated by angiotensin II.

Brain Behav Immun

December 2024

Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK. Electronic address:

Angiotensin II is well known to have an important influence on blood pressure, mediated via the angiotensin II type 1 receptor (AT1R), and more recent studies have shown that angiotensin II may play an important additional role in eliciting pain via a distinct action at the angiotensin II type 2 receptor (AT2R). Signalling pathways that link activation of AT2R to a sensation of pain are, however, incompletely understood. Here we use rodent inflammatory pain models to confirm that selective activation of AT2R triggers aversive responses, and that these are abolished by either antagonism or genetic deletion of AT2R.

View Article and Find Full Text PDF

An 84-year-old male with uncontrolled intraocular pressure (IOP), despite maximum topical medications including prostaglandin F2α analog, had bilateral prostaglandin-associated periorbitopathy-related tight upper eyelids. One day after trabeculectomy of the left eyelid, IOP was 24 mm Hg, with a flat bleb. Daily ocular massage failed to maintain bleb filtration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!