The melanoma differentiation associated gene-7 (mda-7) cDNA was isolated by virtue of being induced during melanoma differentiation. Initial gene transfer studies convincingly demonstrated potent antitumor effects of mda-7. Further studies showed that the mechanism of antitumor activity was due to induction of apoptosis. Most striking was the tumor-selective killing by mda-7 gene transfer--normal cells were unaffected by Adenoviral delivery of mda-7 (Ad-mda7). A variety of molecules implicated in apoptosis and intracellular signaling are regulated by Ad-mda7 transduction. Different apoptosis effector proteins are regulated in different tumor types, suggesting that Ad-mda7 may regulate various signaling pathways. mda-7 encodes a secreted protein, MDA-7, which has now been designated as IL-24, and is a novel member of the IL-10 cytokine family. MDA-7/IL-24 protein is actively secreted from cells after mda-7 gene transfer. In human peripheral blood mononuclear cells (PBMC), STAT3 activation by MDA-7/IL-24 is followed by elaboration of secondary Th1 cytokines, demonstrating that MDA-7/IL-24 is a pro-Th1 cytokine. Furthermore, MDA-7/IL-24 is antagonized by the prototypic Th2 cytokine IL-10. MDA-7/IL-24 protein is endogenously expressed in cultured NK and B-cells and is also expressed in dendritic cells in tissues. MDA-7/IL-24 protein is expressed in nevi and melanoma primary tumors, to varying degrees, but is rarely expressed in malignant melanoma or other human tumors evaluated. Indeed, loss of MDA-7/IL-24 protein expression correlates strongly with melanoma tumor invasion and disease progression. The "bystander" effects proposed for MDA-7/IL-24 protein include immune stimulation, antiangiogenesis and receptor-mediated cytotoxicity. Thus, mda-7 is a unique multifunctional cytokine in the IL-10 family and may have potent antitumor utility in a clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2004.01.017 | DOI Listing |
Clin Immunol
September 2024
Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China. Electronic address:
Melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24) is a pleiotropic member of the IL-10 family of cytokines, and is involved in multiple biological processes, including cell proliferation, cell differentiation, tissue fibrosis, the inflammatory response, and antitumor activity. MDA-7/IL-24 can regulate epithelial integrity, homeostasis, mucosal immunity and host resistance to various pathogens by enhancing immune and inflammatory responses. Our recent study revealed the mechanism of MDA-7/IL-24 in promoting airway inflammation and airway remodeling through activating the JAK/STAT3 and ERK signaling pathways in bronchial epithelial cells.
View Article and Find Full Text PDFJ Cell Physiol
August 2024
Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24).
View Article and Find Full Text PDFBMC Cancer
June 2023
Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
Background: Melanoma differentiation-associated gene 7 (Mda-7) encodes IL-24, which can induce apoptosis in cancer cells. A novel gene therapy approach to treat deadly brain tumors, recombinant mda-7 adenovirus (Ad/mda-7) efficiently kills glioma cells. In this study, we investigated the factors affecting cell survival and apoptosis and autophagy mechanisms that destroy glioma cells by Ad/IL-24.
View Article and Find Full Text PDFVirol J
June 2022
Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
Background: MDA-7/IL-24 cytokine has shown potent antitumor properties in various types of cancer without exerting any significant toxicity on healthy cells. It has also been proved to encompass pro-immune Th1 cytokine-like behavior. Several E7 DNA vaccines have developed against human papillomavirus (HPV)-related cervical cancer.
View Article and Find Full Text PDFFront Oncol
March 2022
Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
() displays expansive anti-tumor activity without harming corresponding normal cells/tissues. This anticancer activity has been documented and in multiple preclinical animal models, as well as in patients with advanced cancers in a phase I clinical trial. To enhance the therapeutic efficacy of MDA-7 (IL-24), we engineered a designer cytokine (a "Superkine"; IL-24S; referred to as M7S) with enhanced secretion and increased stability to engender improved "bystander" antitumor effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!