A variety of fluent and nonfluent aphasias have been reported after left basal ganglia stroke. It has been speculated that this heterogeneity may reflect variations in cortical hypoperfusion resulting from large vessel stenosis. To test this hypothesis, a consecutive series of 24 patients with left caudate infarct identified with diffusion-weighted imaging underwent language testing and perfusion-weighted imaging < 24h from onset of symptoms. Specific regions in perisylvian cortex were rated for the percentage of the region that was hypoperfused. Aphasia type was determined on the basis of speech fluency, comprehension, and repetition performance on the language tests. Association between aphasia type/language impairment and regions of hypoperfusion were identified with Fisher's exact tests. Results demonstrated that in patients with acute left caudate infarct, the presence and type of aphasia reflected regions of hypoperfusion, and generally followed predictions based on chronic lesion studies, regarding anatomical lesions associated with classic aphasia types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bandl.2004.01.007 | DOI Listing |
Exp Neurol
January 2025
CERVO Brain Research Centre, Québec, Québec G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec City G1V 0A6, Canada. Electronic address:
Chronic cerebral hypoperfusion induced by permanent unilateral common carotid artery occlusion in mice was recently found to induce an age-dependent formation of insoluble cytoplasmic TDP-43 aggregates reminiscent of pathological changes found in human vascular dementia. In this model, the gradual deregulation of TDP-43 homeostasis in cortical neurons was associated with marked cognitive and motor deficits. To target the TDP-43-mediated toxicity in this model, we generated an adeno-associated virus vector encoding a single-chain antibody against TDP-43, called scFv-E6, designed for pan-neuronal transduction following intravenous administration.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
Stroke remains a leading cause of global disability and mortality despite advancements in acute interventions. Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique, has primarily been studied for its effects on cortical excitability, with limited exploration of its neuroprotective and hemodynamic benefits. This review examines the role of tDCS in stroke, with a focus on neuroprotection in acute settings and cerebral blood flow (CBF) modulation in both acute and chronic phases.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
Objectives: Dementia is becoming a major health problem in the world, and chronic brain ischemia is an established important risk factor in predisposing this disease. Astrocytes, as one major part of the blood-brain barrier (BBB), are activated during chronic cerebral blood flow hypoperfusion. Reactive astrocytes have been classified into phenotype pro-inflammatory type A1 or neuroprotective type A2.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Heath, University of Sheffield, Sheffield, UK.
Functional brain changes such as altered cerebral blood flow occur long before the onset of clinical symptoms in Alzheimer's disease (AD) and other neurodegenerative disorders. While cerebral hypoperfusion occurs in established AD, middle-aged carriers of genetic risk factors for AD, including APOE ε4, display regional hyperperfusion due to hypothesised pleiotropic or compensatory effects, representing a possible early biomarker of AD and facilitating earlier AD diagnosis. However, it is not clear whether hyperperfusion already exists even earlier in life.
View Article and Find Full Text PDFMagn Reson Imaging
December 2024
Department of Neurology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China. Electronic address:
Introduction: More and more evidence suggesting that internal carotid artery stenosis is not only a risk factor for ischemic stroke but also for cognitive impairments. Hypoperfusion and silent micro emboli have been reported as the pathophysiological mechanisms causing cognitive impairment. The effect of carotid artery stenting (CAS) on cognitive function varied from study to study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!