The modified nucleosides 4-thio-2'-deoxyuridine (s4dU) and 4-thio-2'-deoxythymidine (s4dT) are incorporated into dinucleosides, and s4dT is incorporated into a DNA hairpin loop to provide divalent metal ion binding sites. Binding of two different metal ions to these sites is studied, including Cd(II) as an NMR spectroscopy probe and Cu(II) as a reactive metal ion for DNA cleavage. Binding of Cd(II) to 4-thiouridine (s4U) and s4dT nucleosides, s4dU- and s4dT-containing dinucleosides, and a hairpin loop oligonucleotide containing s4dT is monitored by following the change in UV-vis absorbance of the thionucleosides at 340 nm and 21 degrees C in solutions containing 20.0-40 mM buffer, 1.00 M NaCl, and 15.0 mM BaCl2. Cd(II) binds to the N3 deprotonated form of s4dT with a binding constant (K = 1.1 x 10(4) M(-1)) that is similar to that for Cd(II) binding to d(Tps4T) (K = 9.2 x 10(3) M(-1)). Apparent binding constants (Kapp) at pH 7.7 of Cd(II) to dinucleosides d(Gps4T), d(s4TpG), and d(Gps4U) are similar to those of their respective nucleosides s4U and s4dT, suggesting that neither the phosphate diester nor the second nucleoside has a major effect on Cd(II) binding. Binding of Cd(II) to s4U and d(Gps4U) is studied by use of 113Cd NMR and 1H NMR spectroscopy, respectively. Binding strength and stoichiometry of the Cd(II) complex with d(Gps4U) as studied by 1H NMR spectroscopy are similar to that obtained by UV-vis spectroscopy. Cd(II) binds strongly to s4dT in the loop portion of a DNA hairpin loop (Kapp = 2.7 x 10(3) M(-1) at pH 7.7). However, the hairpin loop is moderately destabilized by Cd(II) binding, with a decrease in T(m) of 14 degrees C in the presence of 10.0 mM Cd(II) as determined by optical melting experiments. Cu(II) oxidizes s4dT to form the disulfide of s4dT, limiting the usefulness of further studies with Cu(II).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00775-004-0545-0 | DOI Listing |
J Anat
January 2025
Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
This study aimed to describe the morphological alterations that occur in the midgut and mesentery over time during the herniated phase of the midgut. The primary loop, a single hairpin-shaped loop, becomes recognizable at Carnegie stage (CS) 16. This loop projects toward the umbilical cord and subsequently gives rise to four secondary loops in the midgut of human embryos.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama 6201-001 Covilhã, Portugal. Electronic address:
Rapid, quantitative, and sensitive detection of viral oligonucleotides can help to diagnose the infection before symptoms occur, monitor disease progression, and identify viral subtypes. A one-pot, simple, rapid hairpin-mediated nicking enzymatic signal amplification (HNESA) method was previously developed for nucleic acids detection. In the present work, this method was applied for the detection of SARS-CoV-2 RNA by designing an assistant probe (AP) that contains the complementary sequence for the target, the sequence of hybridization with the loop region of the molecular beacon (MB), and the recognition site of the nicking endonuclease Nt.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmaceutical Sciences, Jilin Medical University, Jilin 132013, China.
The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative PCR method, the gold standard for detecting miRNA, has great challenges in terms of high costs and enzyme limitations when applied to clinical biological samples.
View Article and Find Full Text PDFHear Res
December 2024
Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia. Electronic address:
In the adult mammalian cochlea, hair cell loss is irreversible and causes deafness. The basic helix-loop transcription factor Atoh1 is essential for normal hair cell development in the embryonic ear. Over-expression of Atoh1 in the adult cochlea by gene therapy can convert supporting cells (cells that underlie hair cells) into a hair cell lineage.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Plant Protection, Agricultural University of Hebei, No. 2596 Lekai South Street, Baoding City, Lianchi District, Hebei Province 071001, China.
HhH-GPD (helix-hairpin-helix-glycine/proline/aspartate) family proteins are involved in DNA damage repair. Currently, mechanism of alkylated DNA repair in Crenarchaea has not been fully clarified. The hyperthermophilic model crenarchaeon Saccharolobus islandicus REY15A possesses a novel HhH-GPD family protein (Sis-HhH-GPD), where its Ser152 corresponds to a conserved catalytic Asp in other HhH-GPD homologs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!