Objective: We previously demonstrated that aggressive ovarian cancer cells are able to display in vitro vasculogenic mimicry, which is reflected by their ability to form vasculogenic-like networks in 3-dimensional cultures and to express vascular cell-associated markers. The goal of this study was to examine the functional role of specific matrix metalloproteinases in the formation of vasculogenic-like networks and extracellular matrix remodeling in vitro. We also investigated the clinical relevance of matrix metalloproteinase-2 and -9 and membrane type 1-matrix metalloproteinase in human ovarian cancers with evidence of tumor cell-lined vasculature.
Study Design: Ovarian cancer cells (A2780-PAR, SKOV3, and EG) were seeded onto separate 3-dimensional cultures that contained either Matrigel or type I collagen, in the absence of endothelial cells or fibroblasts. These cultures were treated with either chemically modified tetracycline-3 (general matrix metalloproteinase inhibitor), recombinant tissue inhibitor of metalloproteinase-1 or -2, or function-blocking antibodies to matrix metalloproteinase-2 or -9 or membrane type 1-matrix metalloproteinase. In addition, 78 invasive epithelial ovarian cancers were evaluated for expression of matrix metalloproteinase-2 and -9 and membrane type 1-matrix metalloproteinase and correlated with various clinical parameters.
Results: The aggressive ovarian cancer cells (SKOV3 and EG) were able to form in vitro vasculogenic-like networks and contract 3-dimensional collagen I gels, whereas the poorly aggressive A2780-PAR cell line did not. Chemically modified tetracycline-3 completely blocked the network formation. Blocking antibodies to matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase inhibited the formation of the vasculogenic-like networks and collagen gel contraction, but the antibody to matrix metalloproteinase-9 had no effect on network formation and minimal effect on gel contraction. Treatment of 3-dimensional cultures with tissue inhibitor of metalloproteinase-2 retarded the network formation and only small, partially developed structures were noted that did not form network connections. Tissue inhibitor of metalloproteinase-1 had no appreciable effect on the extent or efficiency of network formation. Human invasive ovarian cancers with evidence of tumor cell-lined vasculature were significantly more likely to have strong epithelial and stromal matrix metalloproteinase-2 and -9 and membrane type 1-matrix metalloproteinase expression (all probability values were <.05).
Conclusion: Matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase appear to play a key role in the development of vasculogenic-like networks and matrix remodeling by aggressive ovarian cancer cells. Human ovarian cancers with matrix metalloproteinase overexpression are more likely to have tumor cell-lined vasculature. These results may offer new insights for consideration in ovarian cancer treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajog.2004.02.011 | DOI Listing |
Food Sci Nutr
December 2024
The Third Affiliated Hospital of Guangxi Medical University, The Second People's Hospital of Nanning City Nanning China.
Cystitis glandularis (CG), known as a pre-gradual lesion in the bladder, is the pathological changes in the vesical mucosa characterized by inflammatory invasion and chronic obstruction. Clinically, effective treatment against CG is prescribed only when using drug therapy. Fucoidan, the naturally extractive polysaccharide, is well-reported bioactive compound with anti-inflammatory and immunoregulatory properties.
View Article and Find Full Text PDFActa Biomater
December 2024
Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA. Electronic address:
Antibody-based checkpoint inhibitors have achieved great success in cancer immunotherapy, but their uncontrollable immune-related adverse events remain a major challenge. In this study, we developed a tumor-activated nanoparticle that is specifically active in tumors but not in normal tissues. We discovered a short anti-PD-L1 peptide that blocks the PD-1/PD-L1 interaction.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States.
Glucose transporter 4 (GLUT4) expression on white adipocytes is critical for absorbing excess blood glucose, failure of which promotes hyperglycemia. Matrix metalloproteinases (MMPs) play a crucial role in remodeling the white adipose tissue (WAT) during obesity. MMPs have multiple protein substrates, and surprisingly, it is unknown if they can directly target GLUT4 on the adipocyte surface and impair glucose absorption.
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Intraocular pressure (IOP) is regulated through the balance of production and drainage of aqueous humor. The main route of aqueous-humor outflow comprises the trabecular meshwork (TM) and Schlemm's canal (SC). We reported that IL-6 trans-signaling can inhibit TGF-β signaling in TM cells and may affect regulation of IOP.
View Article and Find Full Text PDFBioorg Chem
December 2024
Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:
Tyrosine kinase inhibitors (TKIs) have markedly improved the overall survival rate of patients with chronic myeloid leukemia (CML), enabling them to achieve a normal life expectancy. However, toxicity, relapse, and drug resistance continue to pose major challenges in the clinical treatment of CML. The progression of leukemia is directly connected to higher expression levels and enzymatic actions of matrix metalloproteinase-2 (MMP-2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!