AI Article Synopsis

Article Abstract

The liver provides for long-term energy needs of the body by converting excess carbohydrate into fat for storage. Insulin is one factor that promotes hepatic lipogenesis, but there is increasing evidence that glucose also contributes to the coordinated regulation of carbohydrate and fat metabolism in liver by mechanisms that are independent of insulin. In this study, we show that the transcription factor, carbohydrate response element-binding protein (ChREBP), is required both for basal and carbohydrate-induced expression of several liver enzymes essential for coordinated control of glucose metabolism, fatty acid, and the synthesis of fatty acids and triglycerides in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC409910PMC
http://dx.doi.org/10.1073/pnas.0401516101DOI Listing

Publication Analysis

Top Keywords

carbohydrate response
8
response element-binding
8
element-binding protein
8
protein chrebp
8
carbohydrate fat
8
deficiency carbohydrate
4
chrebp reduces
4
reduces lipogenesis
4
lipogenesis well
4
well glycolysis
4

Similar Publications

Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation.

View Article and Find Full Text PDF

The cytokine interleukin-10 (IL-10) limits the immune response and promotes resolution of acute inflammation. Because of its immunosuppressive effects, IL-10 up-regulation is a common feature of tumor progression and metastasis. Recently, IL-10 regulation has been shown to depend on mitochondria and redox-sensitive signals.

View Article and Find Full Text PDF

Growth and metabolic functions of Schizolobium amazonicum subjected to nickel doses.

Braz J Biol

January 2025

Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil.

Anthropic activities such as industries, agriculture and mining has generated public concern for its numerous irregular disposals of its waste, the incorrect deposition of heavy metals such as nickel (Ni) has caused the degradation and contamination of groundwater and water. Studies that point out cheap and efficient solutions have been an obstacle to the advancement of solutions for degraded area recovery programs. For this, a vegetable home experiment was developed, with an entirely randomized design with 5 treatments being a control (no metal) and 4 nickel concentrations (200 μM/L; 400 μM/L; 600 μM/L and 800 μM/L) with 6 repetitions.

View Article and Find Full Text PDF

Ginsenosides are the most important secondary metabolites of ginseng. Ginseng has developed certain insect resistance properties during the course of evolutionary environmental adaptation. However, the mechanism underlying the insect resistance of ginseng is poorly understood.

View Article and Find Full Text PDF

A periplasmic protein modulates the proteolysis of peptidoglycan hydrolases to maintain cell wall homeostasis in .

Proc Natl Acad Sci U S A

January 2025

Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Bacterial cell wall assembly and remodeling require activities of peptidoglycan (PG) hydrolases as well as PG synthases. In particular, the activity of DD-endopeptidases, which cleave the 4-3 peptide crosslinks in PG, is essential for PG expansion in gram-negative bacteria. Maintaining optimal levels of DD-endopeptidases is critical for expanding PG without compromising its integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!