Two substitutions at an identical location in the ligand-binding domain (LBD) of the human androgen receptor (AR), R855C and R855H, are associated with complete androgen insensitivity syndrome (AIS) and partial AIS, respectively. Kinetic analysis of the mutant receptors in genital skin fibroblasts and in transfected cells revealed very low total binding (Bmax) and increased rate constants of dissociation (k) for the R855C mutant; and normal Bmax and k, with slightly elevated equilibrium affinity constants (Kd), but decreased transactivational capacity for the R855H mutant. Further analysis of the R855H mutant revealed both thermolability and decreased N/C-terminal inter-actions in the presence and absence of the co-activator transcriptional intermediary factor 2. To establish the nature of these functional differences we have used molecular dynamic modeling to create four-dimensional models of each of the mutant receptors. Molecular dynamic modeling produced profoundly different models for each of the mutants: in modeling of R855C a surprisingly significant distant alteration in the position of helix 12 of the helix 12 positioning of the AR ligand binding domain (AR-LBD) occurs, which would predict severe ligand binding abnormalities and complete AIS; in modeling of R855H, no dramatic effect on the position of helix 12 was seen; thus, binding properties of the receptor are not compromised. Molecular dynamics four-dimensional modeling clearly supports the biochemical and kinetic studies of both mutants. Such novel computational modeling may lead to a better understanding of the structure-function relationships and the molecular mechanics of ligand binding not only of the AR-LBD but also of other nuclear receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/me.2004-0023 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.
Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210.
The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 10120, Thailand.
A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Hedgehog (Hh) morphogen governs embryonic development and tissue homeostasis through the Ci/Gli family transcription factors. Here we report that Hh induces phase separation of the fused (Fu)/Ulk family kinases to allosterically regulate Ci/Gli. We find that Hh-induced phosphorylation of Fu/Ulk3 promotes SUMOylation of their inverted phosphorylation-dependent SUMOylation motifs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China.
Although cytotoxic T lymphocytes (CTLs) activation combined with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade have emerged as an effective strategy to improve immunotherapeutic potency, it remains challenging to realize the spatiotemporal synergy of these two components. Herein, the study reports an engineered bacterial-based delivery system that can simultaneously promote CTLs infiltration and control PD-L1 binding protein (PD-L1 trap) release on demand at tumor site. The drug release button of this tumor targeting system is the specific temperature, which is accomplished by dual-modified melanin nanoparticles with photothermal conversion capacity on the engineered bacterial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!