c-Cbl down-regulates receptor tyrosine kinases by conjugating ubiquitin to them, leading to receptor internalization and degradation. The ubiquitin protein ligase activity of c-Cbl (abbreviated as E3 activity) is mediated by its RING finger domain. We show here that the E3 activity of c-Cbl is negatively regulated by other domains present in the amino-terminal half of the protein (the TKB and linker helix domains) and that this negative regulation is removed when the protein is phosphorylated on tyrosine residues. Protease digestion studies indicate that tyrosine phosphorylation alters the conformation of c-Cbl. We also show that mutation of certain conserved tyrosine residues to glutamate can constitutively activate the E3 activity of c-Cbl. In particular, a Y371E mutant shows constitutive E3 activity while retaining the ability to bind epidermal growth factor receptor (EGFR). The Y371E mutant also has altered protease sensitivity from wild type, instead resembling the proteolytic pattern seen with tyrosine-phosphorylated c-Cbl. Mutation of the homologous tyrosine residue in Cbl-b to glutamate also leads to E3 activation while retaining EGFR-binding ability. These studies argue that Tyr-371 plays a key role in activating the E3 activity of c-Cbl and that the Y371E mutant may partially mimic phosphorylation at that site. However, Tyr-371 point mutants of c-Cbl are still able to undergo phosphorylation-induced E3 activation, and we show that Tyr-368 can also be phosphorylated in addition to Tyr-371, and contributes to activation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M404114200DOI Listing

Publication Analysis

Top Keywords

activity c-cbl
20
y371e mutant
12
c-cbl
9
ubiquitin protein
8
protein ligase
8
ligase activity
8
tyrosine residues
8
c-cbl mutation
8
c-cbl y371e
8
activity
7

Similar Publications

2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) belongs to the category of persistent environmental pollutants, and gestational exposure to TCDD can lead to cognitive, memory, and motor deficits, as well as altered neuron development in rodents. However, the molecular mechanisms underlying TCDD's neurotoxicity remain unclear. Neural stem cells (NSCs) possess the capacity for self-renewal and can generate various cell types within the brain, playing fundamental roles in brain development and regeneration.

View Article and Find Full Text PDF

A Noncatalytic Cysteine Residue Modulates Cobalamin Reactivity in the Human B Processing Enzyme CblC.

Biochemistry

February 2025

Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.

Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.

View Article and Find Full Text PDF

Cbl-b inhibition improves manufacturing efficiency and antitumoral efficacy of anti-CD19 CAR-T cells.

Int Immunopharmacol

February 2025

School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui 230032, China. Electronic address:

Chimeric antigen receptor T (CAR-T) cells represent a promising approach for cancer immunotherapy, yet their efficacy is hindered by immunosuppressive signals in the tumor microenvironment. Casitas B-cell lymphoma protein b (Cbl-b) is a key negative regulator of T cell function. This study investigated whether inhibiting Cbl-b enhances the antitumor activity of human CAR-T cells.

View Article and Find Full Text PDF

The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels.

View Article and Find Full Text PDF

CBL-B - An upcoming immune-oncology target.

Expert Opin Ther Pat

January 2025

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, and Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia.

Introduction: The E3 ubiquitin ligase Cbl-b is a novel target in immune-oncology, with critical roles in regulating T-cell activation and signaling pathways. By facilitating the ubiquitination and degradation of key signaling proteins, Cbl-b modulates immune responses, maintaining immune homeostasis and preventing unwarranted T-cell proliferation. The therapeutic potential of Cbl-b as a cancer immunotherapy target is underscored by its contribution to an immunosuppressive tumor microenvironment, with efforts currently underway to develop small-molecule inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!