Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phosphorylation is the most common posttranslational modification of the alpha-crystallins in the human lens. These phosphorylated forms are not only important because of their abundance in aging lenses and the implications for cataract but also because they have been identified in patients with degenerative brain disease. By using mimics corresponding to the reported in vivo phosphorylation sites in the human lens, we have examined the effects of phosphorylation upon the chaperone-like properties and structure of alphaB-crystallin. Here we show that phosphorylation of alphaB-crystallin at Ser-45 results in uncontrolled aggregation. By using an innovative tandem mass spectrometry approach, we demonstrate how this alteration in behavior stems from disruption of dimeric substructure within the polydisperse alphaB-crystallin assembly. This structural perturbation appears to disturb the housekeeping role of alphaB-crystallin and consequently has important implications for the disease states caused by protein aggregation in the lens and deposition in non-lenticular tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M403348200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!