Motor proteins such as myosin and kinesin are responsible for actively directed movement in vivo. The physicochemical mechanism underlying their function is still obscure. A novel and unifying model concerning the motors driving mechanism is suggested here. This model resides within the framework of the well-studied "swinging lever-arm" hypothesis, stating that cis/trans peptide bond isomerization (CTI) is a key stage in the chemo-mechanical coupling within actomyosin--the complex of the motor (myosin) and its specific track (actin). CTI is suggested to propel myosin's lever-arm swing. The model addresses on the submolecular level a broad spectrum of actomyosin's functional characteristics, such as kinetics, energetics, force exertion, stepping, and directionality. The model may be tested first with relative ease in kinesin--a smaller motor that could be specifically modified with unnatural amino acids using bacterial expression. Suggested modifications may be used for labeling and functional decoupling.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.03-1027hypDOI Listing

Publication Analysis

Top Keywords

peptide bond
8
key stage
8
stage chemo-mechanical
8
bond cis/trans
4
cis/trans isomerization
4
isomerization key
4
chemo-mechanical cycle
4
motor
4
cycle motor
4
motor proteins?
4

Similar Publications

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

The insertion of β-amino acids and replacement of the amide bond with a urea bond in antimicrobial peptide sequences are promising approaches to enhance the antibacterial activity and improve proteolytic stability. Herein, we describe the synthesis, characterization, and antibacterial activity of short αβ cationic hybrid peptides LA-Orn-βAcc-PEA, ; LA-Lys-βAcc-PEA, ; and LA-Arg-βAcc-PEA, in which a C12 lipid chain is conjugated at the N terminus of peptide through urea bonds. Further, we evaluated all the peptides against both and methicillin-resistant (MRSA) and their multidrug resistant (MDR) clinical isolates.

View Article and Find Full Text PDF

In the present work, we performed calculations of the kinetic isotope effect (KIE) on H/D, N/N, O/O, and C/C isotopic substitution in the dissociation of beta-sheet polyglycine dimers of different lengths into two monomer chains. This dissociation reaction, proceeding via breaking of the interchain hydrogen bonds (H-bonds), is considered to be a model of unfolding of the secondary structure of proteins. The calculated strengthening of the interchain hydrogen bonds N-H⋯O=C due to heavy isotope substitution decreases in the row H/D >> N/N > O/O > C/C.

View Article and Find Full Text PDF

Performance analysis of Leica Biosystems p16 monoclonal antibody in oropharyngeal squamous cell carcinoma.

Diagn Pathol

January 2025

Medical and Scientific Affairs, Leica Biosystems Richmond Inc. 5205 US, Highway 12, Richmond, IL, 60071, US.

Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer death globally, with newly diagnosed oropharyngeal squamous cell carcinoma (OPSCC) cases rising to 54,000 in the US alone in the year 2022. Recently, human papilloma virus (HPV) infection was more prevalent in OPSCC patients than the traditionally known carcinogens such as tobacco or alcohol. HPV 16 is the most common causative HPV strain, which is found in 5-10% of HNSCC patients.

View Article and Find Full Text PDF

Glycans, unlike uniformly charged DNA and compositionally diverse peptides, are typically uncharged and exhibit rich stereoisomeric diversity in the glycosidic bonds between two monosaccharide units. This heterogeneity of charge and the structural complexity present significant challenges for accurate analysis. Herein, we developed a novel single-molecule oligosaccharide sensor, OmpF nanopore.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!