Following its discovery 20 years ago, corticotropin-releasing hormone (CRH) has been postulated to mediate both hormonal and behavioural responses to stressors. Here, we characterize and describe a behavioural role for the murine gene, UcnIII, which encodes a recently discovered CRH-related neuropeptide, urocortin III. We found that mouse UcnIII is expressed predominantly in regions of the brain known to be involved in stress-related behaviours, and its expression in the hypothalamus increases following restraint. In addition, we found that intracerebroventricular administration of mUcnIII stimulates behaviours that are associated with reduced anxiety, including exploration of an open field and decreased latency to enter the lit compartment of a dark-light chamber, but has no effect on the elevated-plus maze. Finally, we found that mUcnIII does not exert any effects on the hormonal stress response. Based upon our findings, UcnIII may be an endogenous brain neuropeptide that is modulated by stress and stimulates behaviours associated with reduced anxiety. In this capacity, UcnIII may attenuate stress-related behaviours, which may be useful both to help cope with stressful situations as well as to avoid pathology associated with excessive reaction to stressors.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2826.2004.01170.xDOI Listing

Publication Analysis

Top Keywords

urocortin iii
8
brain neuropeptide
8
corticotropin-releasing hormone
8
stress-related behaviours
8
stimulates behaviours
8
behaviours associated
8
associated reduced
8
reduced anxiety
8
behaviours
5
iii brain
4

Similar Publications

Increased CRF-R1 transmission in the nucleus accumbens shell facilitates maternal neglect in lactating rats and mediates anxiety-like behaviour in a sex-specific manner.

Neuropharmacology

March 2025

Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany. Electronic address:

During the transition to motherhood, complex brain adaptations occur to ensure adequate maternal responses to offspring' needs accompanied by reduced anxiety. Among others, the corticotropin-releasing factor (CRF) and oxytocin (OXT) systems have emerged as crucial regulators of these essential postpartum adaptations. Here, we investigated their roles within the nucleus accumbens shell (NAcSh), a central region of the reward and maternal circuits, in maternal neglect of lactating rats.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is a multifactorial psychological disorder that affects different neurotransmitter systems, including the central CRH system. CRH acts via the CRHR1 and CRHR2 receptors, which exert opposite effects, i.e.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) activates the hypothalamic-pituitary-adrenal (HPA) axis and stimulates the noradrenergic neurotransmission, both processes being implicated in the pathogenesis of anxiety and depression, but the intimate site and mechanism of interaction of CRF and CRF-related peptides, named urocortins (UCN1, UCN2, UCN3), with noradrenaline (NA) was not fully elucidated yet. Therefore, the aim of the present study was to investigate the actions of CRF and urocortins on the NA released from the rat locus coeruleus (LC), the primary source of NA in the brain, and the participation of CRF receptors (CRF1 and CRF2) in these actions. In order to do so, male Wistar rats were used, their LC were isolated and dissected, and the LC slices were incubated with tritium-labelled NA, superfused and stimulated electrically.

View Article and Find Full Text PDF

The CRF/Urocortin systems as therapeutic targets for alcohol use disorders.

Int Rev Neurobiol

November 2024

Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil. Electronic address:

Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions.

View Article and Find Full Text PDF

Hippocampal neurons exhibit activation of both the conventional transmembrane adenylyl cyclases (tmACs) and the non-canonical soluble adenylyl cyclase (sAC) as sources of cyclic AMP (cAMP). These two cAMP sources play crucial roles in mediating signaling pathways downstream of CRHR1 in neuronal and neuroendocrine contexts. In this study, we investigate the involvement of both cAMP sources in the molecular mechanisms triggered by CRHR2α.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!