Three-dimensional collagen lattice cultures of fibroblasts mimic the in vivo situation better than monolayer cultures. Here, skin fibroblasts from scleroderma patients and healthy controls were cultivated in collagen lattices, and the effects of recombinant human gamma-interferon (IFN-gamma) on these cultures investigated. IFN-gamma inhibited collagen lattice retraction in a dose-dependent way at concentrations ranging from 10 to 10,000 U/ml. This effect was independent of any alteration to the cell proliferation within the lattices. The inhibition was of the same order of magnitude in normal and pathological fibroblasts. The synthesis of collagen and non-collagen proteins, particularly fibronectin, was increased in scleroderma cultures. It was inhibited in both normal and scleroderma fibroblasts by IFN-gamma, with a maximal effect at the concentration 1000 U/ml, but the inhibition of protein synthesis was far more intense in scleroderma than in normal cells. In situ hybridization, Northern blot and dot blot analyses showed that mRNA coding for pro alpha 1(I) collagen was decreased in IFN-gamma-treated cells, indicating an effect at the pretranslational level. IFN-gamma also inhibited glycosaminoglycan synthesis, but in scleroderma cells only. This study shows that IFN-gamma regulates cell behavior in three-dimensional collagen matrices: (i) it decreases protein and specifically glycosaminoglycan synthesis in scleroderma fibroblasts, (ii) it modulates the interactions between cells and matrix that lead to the retraction of the lattice. Whereas collagen synthesis is largely decreased in lattice cultures like in vivo, it remains increased in the case of scleroderma compared to normal fibroblasts and may be down-regulated by IFN-gamma. Similar conclusions may be drawn for fibronectin and glycosaminoglycans. The inhibitory effect of IFN-gamma on the retraction capacity of fibroblasts and on their ability to synthesize increased amounts of extracellular matrix macromolecules may be of potential interest for therapeutic use of IFN-gamma in scleroderma patients.

Download full-text PDF

Source

Publication Analysis

Top Keywords

collagen lattice
12
lattice cultures
12
scleroderma
9
extracellular matrix
8
collagen
8
normal scleroderma
8
fibroblasts
8
skin fibroblasts
8
three-dimensional collagen
8
scleroderma patients
8

Similar Publications

Collagenolytic degradation is a process fundamental to tissue remodeling. The microarchitecture of collagen fibril networks changes during development, aging, and disease. Such changes to microarchitecture are often accompanied by changes in matrix degradability.

View Article and Find Full Text PDF

Introduction: The photo-activated thermo/gas antimicrobial nanocomposite hydrogel, Gel/PDA@BNN6, is composed of the nitric oxide (NO) carrier N, N'-di-sec-butyl-N, N'-dinitroso-p-phenylenediamine (BNN6), photothermal (PTT) material polydopamine nanoparticles (PDA NPs), and methacrylate gelatin (GelMA). This hydrogel can release NO gas in a stable and controlled manner, generating a localized photothermal effect when exposed to near-infrared laser light. This dual action promotes the healing of full-thickness skin wounds that are infected.

View Article and Find Full Text PDF

Understanding the niche interactions between blood and bone through the in vitro co-culture of osteo-competent cells and endothelial cells is a key factor in unraveling therapeutic potentials in bone regeneration. This can be additionally supported by employing numerical simulation techniques to assess local physical factors, such as oxygen concentration, and mechanical stimuli, such as shear stress, that can mediate cellular communication. In this study, we developed a Mesenchymal Stem Cell line (MSC) and a Human Umbilical Vein Endothelial Cell line (HUVEC), which were co-cultured under flow conditions in a three-dimensional, porous, natural pullulan/dextran scaffold that was supplemented with hydroxyapatite crystals that allowed for the spontaneous formation of spheroids.

View Article and Find Full Text PDF

Ancient and modern bone diagnosis: Towards a better understanding of chemical and structural feature alterations.

Spectrochim Acta A Mol Biomol Spectrosc

February 2025

Centre of Physics of Minho and Porto Universities (CF-UM-PT), University of Minho, 4804-058 Guimarães, Portugal.

Chemical and structural alterations hold great importance in the field of diagenesis. Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy (ATR-FTIR) is a valuable method for examining bio-apatite composition changes. Infrared spectroscopy (IR) and X-ray diffraction (XRD) were employed to analyze both modern and archaeological bone specimens.

View Article and Find Full Text PDF

Extraction and Physicochemical Characterization of Hydroxyapatites From Horse Humerus Bones of Different Ages (1, 3, 6, and 8 Years old) Calcined at Low Temperature.

J Biomed Mater Res B Appl Biomater

October 2024

Departamento de Nanotecnología, Centro de Física Aplica y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Querétaro, Mexico.

The aim of this work is to investigate the changes in the physicochemical properties of hydroxyapatite (HAp) extracted from horse humerus bones of different ages (1, 3, 6, and 8 years) subjected to low temperature calcination (600°C). Thermal analysis revealed significant mass loss due to water, collagen, organic compounds, carbonates, and age-related magnesium out-diffusion. Higher fat content in older bones contributed to increased mass loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!