The corrosion performance of sandblasted (SB) and smooth fine-drawn (FD) medical-use nitinol wires was compared with the performance of wires with black oxide (BO) formed in air during their manufacture. Potentiodynamic and ASTM F746 potentiostatic tests in a 0.9 % NaCl solution were conducted on wires in their as-received, chemically etched, aged in boiling water, and electropolished states. As-received wires with various surface finishes revealed breakdown potentials in the range from -100 mV to +500 mV; similar passive current density, 10(-6) A/cm(2); and a wide hysteresis on the reverse scan, demonstrating strong susceptibility to localized corrosion. Chemically etched wires with original black oxide displayed consistent corrosion performance and surpassed, in corrosion resistance, electropolished wires that showed significantly lower breakdown (400-700 mV) and localized corrosion potentials ( approximately -50 to +113 mV). Sandblasted and fine-drawn wires exhibited rather inconsistent corrosion behavior. In potentiodynamic tests these wires could perform with equal probability either on the level of pretreated BO wires or rather similar to as-received wires. Both SB and FD wires revealed low breakdown potentials in the PS regime. SEM analysis performed before tests indicated that sandblasting was not efficient for the complete removal of the original scaling, and fine drawing aggravated the situation, resulting in a persistent scaling that contributed to the inferior corrosion performance. Inclusions (oxides, carbides, and oxidized carbides) inherited from the bulk and retained on electropolished surfaces are the cause of their inferior performance compared to chemically etched surfaces. In electropolished wires corrosion was initiated around inclusions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.30006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!