The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names. Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of gamma-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues. For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized. The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. Further information is available at http://avianbrain.org

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518311PMC
http://dx.doi.org/10.1002/cne.20118DOI Listing

Publication Analysis

Top Keywords

avian telencephalon
20
basal ganglia
16
homologous mammalian
16
avian
13
cell group
12
mammalian
10
nucleus
10
renamed
9
comparable mammalian
8
pallial amygdala
8

Similar Publications

Anatomical and Embryological Development of the Chick Cerebrum in Different Embryonic Periods.

Vet Med Sci

January 2025

Faculty of Health Sciences, Department of Nutrition and Dietetics, Karamanoglu Mehmetbey University, Karaman, Turkey.

The objective of this study is to assess the embryological and morphometric development of the chick cerebrum during specific incubation periods. The cerebrums of 24 Babcock White Leghorn chicks, six each from the 10th, 13th, 16th and 21st days of the incubation period, were used in the study. After removing the heads of fixed embryos from the upper edge of the atlas, the brains were taken out of the cranial cavity.

View Article and Find Full Text PDF

Vocal learners, including humans and songbirds, acquire their complex vocalizations by accurately memorizing and imitating the vocal patterns of other individuals. In songbirds, the caudomedial nidopallium (NCM), considered the secondary auditory region, has been suggested to play a critical role in memorizing and recognizing the songs of tutors. However, the mechanisms by which NCM neurons encode the acoustic information of tutor song are not yet fully understood.

View Article and Find Full Text PDF

Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent research using advanced neural monitoring devices has expanded knowledge of spatial navigation across various species, revealing that while many animals have head direction cells, few possess place or grid cells akin to those in rodents.
  • * Interestingly, certain bird species like tufted titmice and quails have been found to have rodent-like place and head direction cells in their medial pallium, suggesting a shared evolutionary trait in how different animals navigate their environments based on their ecological needs.
View Article and Find Full Text PDF

Harvey's Story.

J Comp Neurol

November 2024

Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Harvey Jules Karten passed away on July 15, 2024. With his passing, the world lost a remarkable and energetic man who had made major contributions to neuroscience, in particular, resetting our understanding of the evolution of the forebrain and the evolution of intelligence. He left behind a legion of loyal colleagues with whom he had collaborated and shared ideas, students he had inspired and trained, and non-neuroscientist friends he had made in the passionate pursuit of his hobbies-sailing, skiing, and hiking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!