The functions of Wingless-Int (Wnt) signaling, studied intensely in embryonic brain development, have been comparatively little investigated in the postnatal brain. We report remarkably patterned gene expression of Wnt signaling components in postnatal mouse cerebral cortex, lasting into young adulthood. Wnt genes are expressed in gene-specific regional and lamina patterns in each of the major subdivisions of the cerebral cortex: the olfactory bulb (OB), the hippocampal formation, and the neocortex. Genes encoding Frizzled (Fz) Wnt receptors, or secreted Frizzled-related proteins (sFrps), are also expressed in regional and lamina patterns. These findings suggest that Wnt signaling is active and regulated in the postnatal cortex and that different cortical cell populations have varying requirements for a Wnt signal. The OB, in particular, shows gene expression of a large variety of Wnt signaling components, making it a prime target for future functional studies. The penultimate components of the canonical Wnt pathway are the Tcf/Lef1 transcription factors, which regulate transcription of Wnt signaling target genes. Surprisingly, we found little Tcf/Lef1 expression in the postnatal neocortex. These observations suggest that noncanonical Wnt pathways predominate, which will require functional testing. However, Lef1 is widely expressed in the dorsal thalamus, and Wnt ligands and receptors are expressed, respectively, in cortical areas and thalamic nuclei that are interconnected. Thus, canonical Wnt signaling could be utilized in a major cortical input by Fz- and Lef1-expressing thalamic cells that innervate the Wnt-expressing cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.20135 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Department of Pharmaceutical Sciences, Lucknow University, Lucknow, UP, India.
In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.
Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.
Nat Commun
January 2025
State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
WNT/β-catenin signaling plays key roles in development and cancer. ZNRF3/RNF43 modulates Frizzleds through ubiquitination, dampening WNT/β-catenin signaling. Conversely, RSPO1-4 binding to LGR4-6 and ZNRF3/RNF43 enhances WNT/β-catenin signaling.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
January 2025
Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China. Electronic address:
Objective: Hirudin has shown potential in promoting angiogenesis and providing neuroprotection in ischemic stroke; however, its therapeutic role in promoting cerebrovascular angiogenesis remains unclear. In this study, we aimed to investigate whether hirudin exerts neuroprotective effects by promoting angiogenesis through the regulation of the Wnt/β-catenin signaling pathway.
Methods: An in vitro model of glucose and oxygen deprivation/reperfusion (OGD/R) was established using rat brain microvascular endothelial cells (BMECs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!