The genetic diagnosis of Gaucher disease by molecular methods is complicated by the existence of a highly homologous transcribed pseudogene (96% identity) that is found in close proximity to the true gene on chromosome 1q21. In addition, the pseudogene sequence can mimic disease-causing mutations in the true gene. Selective polymerase chain reaction (PCR) amplification of the true gene can be accomplished in extracted DNA from fresh-frozen samples by designing oligonucleotide primers to hybridize to defined regions that are not present in the pseudogene. This standard molecular approach, which entails amplification of relatively long segments of intact DNA, is not feasible in archival, paraffin-embedded, solid-tissue specimens in which the negative effects of chemical fixation result in DNA strand scission and breakdown of nucleic acid. A novel approach, specifically created for use with archival, fixative-treated tissue specimens, was developed for detection and characterization of common mutations of Gaucher disease. Three separate robust PCR reactions were formulated, 2 for selective amplification of portions of only the true gene exons 2 and 9, with a third reaction targeting exon 10, wherein both the true and pseudogene were coamplified. In the latter, DNA sequencing was used to determine the presence of true and pseudogene allele content in addition to identification of base sequence alterations. This method, requiring a single, 4-microm-thick histologic section, was successfully applied to archival paraffin block tissue specimens that had been in storage for up to 75 years. It was capable of accurately genotyping common Gaucher disease mutations as well as discovering a novel mutation and genetic polymorphism. We recommend our approach when only fixative-treated tis sue is available for molecular genotyping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.humpath.2003.11.006 | DOI Listing |
Cytotechnology
February 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151001 India.
Gaucher's disease (GD) is a rare autosomal recessive genetic disorder caused by mutations in the gene. Mutations in the gene lead to the deficiency of glucocerebrosidase, an enzyme that helps in the breakdown of glucosylceramide (GlcCer) into ceramide and glucose. The lack of the enzyme causes GlcCer accumulation in macrophages, resulting in various phenotypic characteristics of GD.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States.
Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.
View Article and Find Full Text PDFBioconjug Chem
December 2024
Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy.
The present study reports the preparation of the first multivalent iminosugars built onto a glyco-gold nanoparticle core (glyco-AuNPs) capable of stabilizing or enhancing the activity of the lysosomal enzyme GCase, which is defective in Gaucher disease. An -nonyltrihydroxypiperidine was selected as the bioactive iminosugar unit and further functionalized, via copper-catalyzed alkyne-azide cycloaddition, with a thiol-ending linker that allowed the conjugation to the gold core. These bioactive ligands were obtained with either a linear monomeric or dendritic trimeric arrangement of the iminosugar.
View Article and Find Full Text PDFBackground: Lysosomal storage diseases (LSDs) can be treated with intravenous enzyme replacement therapy (ERT). ERT is being administered either in specialized clinics or in the home care setting. Studies indicate that home-based ERT can be considered safe and positively effects patient reported outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!