Double asymmetric induction as a mechanistic probe: conjugate addition for the asymmetric synthesis of a pseudotripeptide.

Chem Commun (Camb)

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, UK OX1 3TA.

Published: May 2004

AI Article Synopsis

  • - The study investigates how double asymmetric induction acts as a tool to understand the mechanism behind a specific chemical reaction.
  • - It focuses on the conjugate addition of two different types of lithium amides to a particular compound, revealing that the key reactive form of the compound is the anti-s-cis conformation.
  • - This conformation enhances the production of a pseudotripeptide, showcasing the significance of molecular orientation in asymmetric synthesis.

Article Abstract

Double asymmetric induction as a mechanistic probe indicates that, for the conjugate addition of (R)- and (S)-lithium N-benzyl-N--alpha-methylbenzylamide to (S)-3'-phenylprop-2'-enoyl-4-benzyloxazolidinone, the reactive conformation of the N-acyl oxazolidinone is the anti-s-cis form, facilitating the asymmetric synthesis of a pseudotripeptide.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b401293cDOI Listing

Publication Analysis

Top Keywords

double asymmetric
8
asymmetric induction
8
induction mechanistic
8
mechanistic probe
8
conjugate addition
8
asymmetric synthesis
8
synthesis pseudotripeptide
8
probe conjugate
4
addition asymmetric
4
pseudotripeptide double
4

Similar Publications

Ionic liquid assisted construction of synergistic modulated multiphase hybrid composites for boosting electrochemical energy storage.

J Colloid Interface Sci

December 2024

College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China. Electronic address:

The unique structure and strong interaction of multiphase hybrid materials have garnered significant attention as prospective candidates for electrode materials in the realm of energy storage. The present study presents a rational design of a functional NiSe-CoSe/N, B double-doped carbon hybrid composite (NCS/C), resulting in the emergence of various novel cooperative regulatory mechanisms involving: (i) the heterogeneous structure of NiSe and CoSe generates built-in electric fields to increase electron mobility; (ii) the incorporation of polyatomic double-doped carbon (N, and B) expedites electron transfer rate; intriguingly, (iii) ionic liquids not only serve as polyatomic dopants in the reaction system but also influence the microstructure of the composite. Benefiting from these synergistic effects, the NCS/C hybrid exhibits remarkable charge storage capacity and rapid electrochemical kinetics, driven by its multi-fold hollow structure and multicomponent cooperative modulation.

View Article and Find Full Text PDF

Unveiling the Centrosymmetric Effect in the Design of Narrowband Fluorescent Emitters: From Single to Double Difluoroboron Cores.

J Am Chem Soc

December 2024

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China.

Narrowband fluorescent emitters are receiving significant attention due to the great potential for creating ultrahigh-definition organic light-emitting diode displays (UHD-OLED). Unveiling innovative mechanisms to design new high-performance narrowband fluorescent emitters is a concerted endeavor in both academic and industrial circles. Theoretical calculations reveal that the centrosymmetric dianilido-bipyridine boron difluoride framework (-DAPBF) exhibits significantly reduced structural relaxation compared to previously reported asymmetric structures with monofluoroboron cores, creating new opportunities for the development of narrowband fluorescent emitters.

View Article and Find Full Text PDF

All-dielectric metasurface (ADM) absorbers driven by quasi-bound states in the continuum (BIC) are critical for high-performance optoelectronic devices due to their ability to offer high -factor absorption. However, these all-dielectric metasurfaces usually require the aid of degenerate critical coupling schemes or back-metal reflective layers to achieve high absorption, which often suffers from limitations such as sensitive geometrical parameters, ohmic losses, and low -factors. This work presents an ADM for high- near-perfect light absorption, which consists of double Si nanorods and SiO/TaO multilayers.

View Article and Find Full Text PDF

A highly regio-, enantio- and diastereo-selective strategy involving initial enantioselective conjugate addition to 4-nitro-5-styrylisoxazoles serves as a key step for the desymmetrization of 2,5-cyclohexadienones has been disclosed. We have designed a new class of 2,5-cyclohexadienones appended with 4-nitro-5-styrylisoxazoles to undergo organocatalytic asymmetric double or triple conjugate addition in a domino sequence depending on the substrate type leading to desymmetrization of the 2,5-cyclohexadienone core. The developed protocol allows the construction of a valuable hydrophenanthrene core or a unique bridged scaffold bearing multiple chiral centers with excellent enantio- (up to >99.

View Article and Find Full Text PDF

Organic-inorganic hybrid metal halides (OIMHs) with ferroelastic phase transition properties have recently attracted great attention due to their widespread application prospects in the fields of energy storage, sensors, switches, . However, most of the hybrid ferroelastics exhibit phase transition points () far beyond room temperature, which may limit their applications in mechanical switches and energy storage for daily working requirements. Herein, we synthesized a new zinc halide OIMH ferroelastic (,)-[BPHD]ZnBr (BPHD = 1,6-bis(piperidine-1-yl) hexa-2,4-diene diamide), which experiences a 2/1̄ type paraelastic-ferroelastic phase transition at a near-room-temperature of 285 K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!