An autonomous molecular computer for logical control of gene expression.

Nature

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.

Published: May 2004

Early biomolecular computer research focused on laboratory-scale, human-operated computers for complex computational problems. Recently, simple molecular-scale autonomous programmable computers were demonstrated allowing both input and output information to be in molecular form. Such computers, using biological molecules as input data and biologically active molecules as outputs, could produce a system for 'logical' control of biological processes. Here we describe an autonomous biomolecular computer that, at least in vitro, logically analyses the levels of messenger RNA species, and in response produces a molecule capable of affecting levels of gene expression. The computer operates at a concentration of close to a trillion computers per microlitre and consists of three programmable modules: a computation module, that is, a stochastic molecular automaton; an input module, by which specific mRNA levels or point mutations regulate software molecule concentrations, and hence automaton transition probabilities; and an output module, capable of controlled release of a short single-stranded DNA molecule. This approach might be applied in vivo to biochemical sensing, genetic engineering and even medical diagnosis and treatment. As a proof of principle we programmed the computer to identify and analyse mRNA of disease-related genes associated with models of small-cell lung cancer and prostate cancer, and to produce a single-stranded DNA molecule modelled after an anticancer drug.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature02551DOI Listing

Publication Analysis

Top Keywords

gene expression
8
biomolecular computer
8
single-stranded dna
8
dna molecule
8
computer
5
autonomous molecular
4
molecular computer
4
computer logical
4
logical control
4
control gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!