Statement Of Problem: The radicular portion of zirconia endodontic posts often need to be reshaped to achieve a definitive form and may be airborne-particle abraded to improve adhesion during luting. Therefore, the surface of the tetragonal zirconia ceramics may be transformed and damaged, influencing the mechanical properties of the material.
Purpose: This study compared the fracture resistance of prefabricated zirconia posts with a new retentive post-head after different surface treatments.
Material And Methods: Experimental zirconia posts of 2 different diameters, 1.3 mm and 1.5 mm, were produced from commercially available zirconia powder. A cylindro-conical outline form was used for the root portion of the system and a post-head with 3 retentive rings was designed. Sixty posts of each diameter were divided into 3 groups (n=20). Group 1 was ground with a coarse grit diamond bur; Group 2 was airborne-particle abraded with 110-microm fused alumina particles, and Group 3 was left as-received (controls). Posts were luted into the root-shaped artificial canals with the Clearfil adhesive system and Panavia 21 adhesive resin luting agent. The posts were loaded in a universal testing machine at an inclination of 45 degrees with the constant cross-head speed of 1 mm/min. The fracture load (N) necessary to cause post fracture was recorded, and the statistical significance of differences among groups was analyzed with 1-way ANOVA followed by the Fischer LSD test (alpha=.05). The variability was analyzed using Weibull statistics.
Results: Load to fracture values of all zirconia posts depended primarily on post diameter. Mean fracture loads (SD) in Newtons were 518.4 (+/-101.3), 993.6 (+/-224.1), and 622.7 (+/-110.3) for Groups 1 through 3, respectively, for thicker posts, and 385.9 (+/-110.3), 627.0 (+/-115.1), and 451.2 (+/-81.4) for Groups 1 through 3, respectively, for thinner posts. Airborne-particle-abraded posts exhibited significantly higher resistance to fracture (P<.05) than those in the other 2 groups for diameters 1.3 mm and 1.5 mm. Grinding reduced Weibull modulus compared with controls, and the values were 4.1 and 6.5 for thicker and thinner posts, respectively.
Conclusion: Within the limitations of this study, the results suggest that grinding leads to a significant drop in load to fracture of zirconia posts, whereas airborne-particle abrasion increased the fracture load.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prosdent.2004.01.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!