The manipulation of chaperone levels has been shown to inhibit aggregation and/or rescue cell death in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and cell culture models of Huntington's disease (HD) and other polyglutamine (polyQ) disorders. We show here that a progressive decrease in Hdj1, Hdj2, Hsp70, alphaSGT and betaSGT brain levels likely contributes to disease pathogenesis in the R6/2 mouse model of HD. Despite a predominantly extranuclear location, Hdj1, Hdj2, Hsc70, alphaSGT and betaSGT were found to co-localize with nuclear but not with extranuclear aggregates. Quantification of Hdj1 and alphaSGT mRNA levels showed that these do not change and therefore the decrease in protein levels may be a consequence of their sequestration to aggregates, or an increase in protein turnover, possibly as a consequence of their relocation to the nucleus. We have used genetic and pharmacological approaches to assess the therapeutic potential of chaperone manipulation. Ubiquitous overexpression of Hsp70 in the R6/2 mouse (as a result of crossing to Hsp70 transgenics) delays aggregate formation by 1 week, has no effect on the detergent solubility of aggregates and does not alter the course of the neurological phenotype. We used an organotypic slice culture assay to show that pharmacological induction of the heat shock response might be a more useful approach. Radicicol and geldanamycin could both maintain chaperone induction for at least 3 weeks and alter the detergent soluble properties of polyQ aggregates over this time course.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddh144DOI Listing

Publication Analysis

Top Keywords

progressive decrease
8
protein levels
8
mouse model
8
huntington's disease
8
hdj1 hdj2
8
alphasgt betasgt
8
r6/2 mouse
8
levels
5
chaperone
4
decrease chaperone
4

Similar Publications

The prevalence of childhood obesity is rising globally, with some obese children progressing to develop metabolic syndrome (MS). However, the specific differences between these groups remain unclear. To investigate the differences in gut microbiota, we conducted physiological and biochemical assessments, alongside 16S rRNA sequencing, in a cohort of 32 children from Southeastern China, which included 4 normal-weight children, 5 with mild obesity, 9 with moderate obesity, 9 with severe obesity, and 5 with metabolic syndrome.

View Article and Find Full Text PDF

Essential thrombocythemia (ET) is a type of myeloproliferative neoplasm (MPN) disorder characterized by persistent thrombocytosis and characterized by frequent association with cellular genetic alterations. The 10%-15% of ET that is not associated with genetic abnormalities is known as triple-negative essential thrombocythemia (TNET). A common complication observed in around 20% of ET patients is the development of acquired von Willebrand disease (AvWD).

View Article and Find Full Text PDF

As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.

View Article and Find Full Text PDF

To explore whether ultra-sensitive circulating tumor DNA (ctDNA) profiling enables early prediction of treatment response and early detection of disease progression, we applied NeXT Personal, an ultra-sensitive bespoke tumor-informed liquid biopsy platform, to profile tumor samples from the KeyLargo study, a phase II trial in which metastatic esophagogastric cancer (mEGC) patients received capecitabine, oxaliplatin, and pembrolizumab. All 25 patients evaluated were ctDNA-positive at baseline. Minimal residual disease (MRD) events varied from 406,067 down to 1.

View Article and Find Full Text PDF

The ARID1A gene, frequently mutated in cancer, encodes the AT-rich interactive domain-containing protein 1A, a key component of the chromatin remodeling SWI/SNF complex. The ARID1A protein features a conserved DNA-binding domain (ARID domain) of approximately 100 residues crucial for its function. Despite the frequency of mutations, the impact on ARID1A's stability and contribution to cancer progression remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!