Assessment of factors regulating axon growth between the cortex and spinal cord in organotypic co-cultures: effects of age and neurotrophic factors.

J Neurotrauma

Reeve-Irvine Research Center, Gillespie Neuroscience Research Facility, Department of Anatomy & Neurobiology, University of California at Irvine College of Medicine, Irvine, California 92697, USA.

Published: March 2004

Axon growth failure in the central nervous system (CNS) of adult animals is thought to be attributable to several factors, including an inadequate intrinsic growth response, the presence of inhibitory molecules, and a lack of adequate neurotrophic support. Here we use a new in vitro assay system to quantitatively assess growth of axons in cortex/spinal cord organotypic co-cultures from neonatal rats. Co-cultures of cortex and spinal cord were prepared from neonatal rats at P3 or P7, and by pairing cortex and spinal cords from different ages. Axon growth from the cortex to the spinal cord was assessed using DiI tract tracing techniques. Axons could be traced from the cortex to the spinal cord in co-cultures in which both tissues were obtained from P3 animals, whereas few axons crossed the cortex/spinal cord boundary in co-cultures from P7 animals. A larger number of axons could be traced across the boundary in co-cultures from P3 animals that were treated with neurotrophins (NGF, BDNF, or NT3), whereas neurotrophins produced minimal growth enhancement in P7 co-cultures. In mixed age co-cultures of P7 cortex with P3 spinal cord, moderate numbers of axons extended between the cortex and spinal cord when cultures were treated with neurotrophins, but few if any crossing axons were detected in co-cultures of P3 cortex with P7 spinal cords. These results indicate that successful growth of axons from the cortex to the spinal cord depends on the developmental age of the tissue terrain (the spinal cord and/or the interface between cortex and spinal cord explants), and to a lesser extent on the developmental state of the cortical neurons, and that axon growth between cortex and spinal cord can be enhanced by exogenous neurotrophins. These co-cultures provide a potentially useful assay for factors that affect axon growth that is intermediate between assays based on dissociated neurons and the intact tissue terrain.

Download full-text PDF

Source
http://dx.doi.org/10.1089/089771504322972121DOI Listing

Publication Analysis

Top Keywords

cortex spinal
44
spinal cord
40
axon growth
20
growth cortex
12
spinal
12
cord
12
co-cultures cortex
12
cortex
11
co-cultures
10
growth
9

Similar Publications

Background: It is well known from cross-sectional studies that pain intensity affects brain activity as measured by electroencephalography (EEG) in people with neuropathic pain (NP). However, quantitative characterisation is scarce.

Methods: In this longitudinal study, ten people with spinal cord injury-related NP recorded their home EEG activity ten days before and after taking medications over a period of several weeks.

View Article and Find Full Text PDF

Isolated foot drop is a neurological sign frequently linked to lower motor neuron (LMN) lesions, including peroneal nerve damage or L4-L5 radiculopathy. Nonetheless, upper motor neuron (UMN) lesions, such as strokes or tumors located in the parasagittal motor cortex, may sometimes manifest as isolated foot drops. The main causes of isolated foot drop secondary to central etiologies are uncommon, with few instances documented in the literature.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested.

View Article and Find Full Text PDF

Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!