Electrophysiological experiments on Wistar rats demonstrated that prior immunization of animals with conjugates of dopamine and serotonin with bovine serum albumin, as well as with bovine serum albumin alone, played a partial protective role in relation to the subsequent development in these animals of experimental MPTP-induced depressive syndrome: immunized animals showed no signs of the depressive state such as decreases in the latency of onset of REM sleep and the development of epileptiform activity in the caudate-putamen complex, though the increase in the proportion of REM sleep in the overall structure of sleep persisted. Changes in the spectral characteristics of brain electrical activity and sleep structure during the development of experimental MPTP-induced syndrome in animals immunized with conjugates of dopamine and serotonin with bovine serum albumin and with bovine serum albumin alone were antigen-specific and reflected functional shifts in the activity of those neurotransmitter systems targeted by immunization, as well as others sensitive to changes in the body's immunological status.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:neab.0000009207.38914.2bDOI Listing

Publication Analysis

Top Keywords

bovine serum
20
serum albumin
20
conjugates dopamine
12
dopamine serotonin
12
serotonin bovine
12
experimental mptp-induced
12
development experimental
8
mptp-induced depressive
8
depressive syndrome
8
rem sleep
8

Similar Publications

Label-free electrochemical immunosensors based on Cu-Ni metal-organic framework and carbon nanotube composite for carcinoembryonic antigen detection.

Bioelectrochemistry

January 2025

Hubei Key Laboratory of Diabetes and Angiopathy, Xianning 437100 PR China; School of Pharmacy, Hubei University of Science and Technology, Xianning 437100 PR China. Electronic address:

Monitoring cancer biomarkers is of great significance in clinical diagnosis. In this work, a label-free MWCNTs-COOH/CuNi-BTC/FTO electrochemical immunosensor was developed to quantitatively detect carcinoembryonic antigen (CEA). The bimetallic CuNi-BTC showed enhanced current than singe Ni-BTC, and the addition of the MWCNTs-COOH increased the conductivity and further amplified the current signal.

View Article and Find Full Text PDF

A novel ionic liquid MALDI matrix, 3-aminoquinoline/2',4',6'-trihydroxyacetophenone monohydrate (3-AQ/THAP), was developed for the rapid qualitative and quantitative detection of miRNA from biological samples. Compared to the traditional matrix 2,5-dihydroxybenzoic acid (DHB) and previously reported oligonucleotide-specific matrices, such as 3-aminopicolinic acid (3-APA), 3-hydroxypicolinic acid (3-HPA), and 6-aza-2-thiothymine (ATT), the 3-AQ/THAP matrix offers several advantages. It produces fewer alkali metal adduct peaks, exhibits higher sensitivity, and ensures better spot-to-spot repeatability.

View Article and Find Full Text PDF

An effective approach for the immobilization and protection of biological entities is their encapsulation via the in situ synthesis of metal-organic frameworks (MOFs). To ensure the preservation of the bioentities, mild synthetic conditions, including aqueous media and ambient conditions (temperature and pressure), are preferred. In this study, we investigated the synthesis of various aluminum polycarboxylate-based MOFs, including the fumarate, terephthalate, amino-terephthalate, and muconate forms of MIL-53(Al), as well as the MIL-110 and MIL-160 MOF types.

View Article and Find Full Text PDF

Methods based on enzyme labelling strategies have been widely developed for capacitance immunoassays, but most suffer from low sensitivity and are unfavorable for routine use in the early stages of diagnostics. Herein, we designed a highly efficient capacitance immunosensing method for the low-abundance neuroblastoma biomarker neuron-specific enolase (NSE) using an interdigitated micro-comb electrode. Initially, monoclonal mouse anti-human NSE capture antibodies were immobilized on the interdigitated gold electrodes using bovine serum albumin.

View Article and Find Full Text PDF

Autophagy activation within inflammatory microenvironment improved the therapeutic effect of MSC-Derived extracellular Vesicle in SLE.

J Adv Res

January 2025

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University. Guangzhou 510120, China. Electronic address:

Introduction: Developing strategies to improve the therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in autoimmune diseases have garnered increased attention.

Objectives: To evaluate whether rapamycin-induced autophagy within the systemic lupus erythematosus (SLE) inflammatory microenvironment (Rapa-SLE) augments the therapeutic effects of MSC-derived EVs in SLE.

Methods: The therapeutic potential of the resulting EVs (Rapa-SLE-EV) was assessed in MRL/lpr mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!