It is well established that for successful photoinactivation (PI) of gram-negative bacteria a cationic photosensitizer is required. This requirement suggests a charge-dependent interaction between the photosensitizer and the gram-negative bacterium, which may be influenced by the presence of ions in the suspending medium. The aim of the present study was to investigate the effect of cations Na+ and Ca2+ on the efficacy of the PI of the gram-negative Pseudomonas aeruginosa and the gram-positive Staphylococcus aureus. The bacteria were suspended in buffer containing either meso-tetra(N-methyl-4-pyridyl)-porphyrin or meso-mono-phenyl-tri(N-methyl-4-pyridyl)-porphyrin as photosensitizer and various concentrations of Na+ or Ca2+. The cell suspensions were exposed to a broadband light dose of 9 J/cm2. In buffer without added cations, P. aeruginosa and S. aureus were equally sensitive to PI. Addition of cations strongly decreased the sensitivity of both bacteria to PI, with the PI of P. aeruginosa being much more decreased than that of S. aureus, and Ca2+ being more effective than Na+. The decreased sensitivity was accompanied by a reduced binding of the photosensitizers to the bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1562/sa-03-15.1DOI Listing

Publication Analysis

Top Keywords

na+ ca2+
8
decreased sensitivity
8
bacteria
5
monovalent divalent
4
cations
4
divalent cations
4
cations photoinactivation
4
photoinactivation bacteria
4
bacteria meso-substituted
4
meso-substituted cationic
4

Similar Publications

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Cadmium is one of the most dangerous pollutants found in the environment, where it exists mainly due to human activities. High cadmium concentrations can cause serious problems, which is why the detection and determination of Cd is one of the most important tasks. Electroanalytical methods provide rapid and accurate results in the detection of cadmium in various solutions.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!