1. The aim of the present study was to examine the influence of microbial phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digesta viscosity, digestive tract measurements and gut morphology in broilers fed on wheat-soy diets containing adequate phosphorus (P). The wheat-soy basal diet was formulated to contain 4.5 g/kg non-phytate P and the experimental diets were formulated by supplementing the basal diet with xylanase (1000 xylanase units/kg diet), phytase (500 phytase units/kg diet) or a combination of phytase and xylanase. 2. Supplemental phytase improved the weight gains and feed efficiency by 17.5 and 2.9%, respectively. Corresponding improvements due to the addition of xylanase were 16.5 and 4.9%, respectively. The combination of phytase and xylanase caused no further improvements in broiler performance. 3. Individual additions of xylanase or phytase resulted in numerical improvements in apparent metabolisable energy (AME), but the differences were not significant. The combination of the two enzymes significantly increased AME. Addition of xylanase and the combination of the two enzymes reduced the viscosity of digesta in all sections of the intestine. Phytase supplementation reduced digesta viscosity in the duodenum and ileum, but not in the jejunum. 4. Enzyme supplementation lowered the relative weight and length of the small intestine. Additions of xylanase and phytase reduced the relative weight of the small intestine by 15.5 and 11.4%, respectively, while the corresponding reductions in the relative length of the small intestine were 16.5 and 14.1%, respectively. The combination of phytase and xylanase had no further effects on the relative weight and length of the small intestine compared with the xylanase group. 5. The addition of phytase increased villus height in the duodenum and decreased the number of goblet cells in the jejunum compared with those on the unsupplemented basal diet. Xylanase supplementation tended to increase goblet cell numbers in the duodenum and decreased crypt depth in thejejunum. The combination of phytase and xylanase increased villus height in the ileum and crypt depth in thejejunum and ileum. 6. In summary, the present results showed that the addition of a microbial phytase, produced by solid state fermentation and containing significant activities of beta-glucanase and xylanase, was as effective as xylanase in improving the performance of broiler chickens fed on wheat-based diets containing adequate levels of P. Improved performance with enzyme supplementation was generally associated with reduced digesta viscosity, increased AME, and reduced relative weight and length of small intestine.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00071660410001668897DOI Listing

Publication Analysis

Top Keywords

phytase xylanase
24
small intestine
20
xylanase
16
combination phytase
16
relative weight
16
length small
16
phytase
13
apparent metabolisable
12
metabolisable energy
12
diets adequate
12

Similar Publications

The use of reduced protein diets in broiler chicken production provides potential benefits for performance and environmental footprint of production. The effectiveness of β-Mannanase supplementation in wheat and soy based standard protein (SP) and reduced protein (RP) diets was tested for growth performance, nutrient utilisation and selected intestinal gene expression of broiler chickens. In a 2 × 2 factorial arrangement of treatments, two main factors included dietary protein (standard and reduced protein) and β-Mannanase supplementation (with or without).

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate how phytase and multi-carbohydrase affect the growth, nutrient digestibility, and overall quality of broiler chickens fed phosphorus and energy-deficient diets.
  • A total of 288 Ross 308 broiler chicks were divided into six dietary treatment groups, including a positive control and various AP-deficient diets with or without enzyme supplements.
  • Results showed that enzyme-supplemented diets improved growth metrics like body weight and feed conversion rates, enhanced tibia mineralization, and increased leg meat yield, with the best results seen in the diet combining both phytase and multi-carbohydrase.
View Article and Find Full Text PDF

() as a Powerful Yeast Expression System for Biologics Production.

Front Biosci (Elite Ed)

June 2024

Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, 25240 Erzurum, Turkey.

(), also called biotech yeast, is a yeast species with many applications in the biotechnology and pharmaceutical industries. This methylotrophic yeast has garnered significant interest as a platform for the production of recombinant proteins. Numerous benefits include effective secretory expression that facilitates the easy purification of heterologous proteins, high cell density with rapid growth, post-translational changes, and stable gene expression with integration into the genome.

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial endophytes were isolated from six types of halophytes and identified based on their biochemical characteristics in the presence and absence of NaCl.
  • Eleven of these endophytes demonstrated high tolerance to saline conditions, and differences in nutrient solubilization and enzymatic activities were observed depending on the presence of NaCl.
  • Organic acids, particularly tartaric acid, and certain sugars were identified as key players in the mineralization and solubilization of essential nutrients, highlighting the potential for these bacteria to help alleviate saline stress in plants as climate change impacts soil salinity.
View Article and Find Full Text PDF

The capacity of combinations of feed enzymes, natural betaine and a probiotic, combined with alternative plant-based ingredients, to totally replace soybean meal (SBM) in a broiler diet was evaluated. Day-old Ross 308 males (2,574) were assigned to 9 treatments (13 pens/treatment, 22 birds/pen) in a completely randomized design. All diets were pelleted and fed ad libitum in 4 phases: starter, grower, finisher 1, finisher 2 (0-10, 10-21, 21-35, and 35-42 d of age, respectively).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!