Förster resonance energy transfer (FRET) studies usually involve observation of intensity or lifetime changes in the donor or acceptor molecule and usually these donor and acceptor molecules differ (heterotransfer). The use of polarization to monitor FRET is far less common, although it was one of the first methods utilized. In 1960, Weber demonstrated that homotransfer between tryptophan molecules contributes to depolarization. He also discovered that the efficiency of homotransfer becomes much less effective upon excitation near the red-edge of the absorption. This "red-edge effect" was shown to be a general phenomenon of homotransfer. We have utilized Weber's red-edge effect to study tryptophan homotransfer in proteins. Specifically, we determined the polarization of the tryptophan fluorescence upon excitation at 295 nm and 310 nm (near the red-edge). Rotational diffusion leads to depolarization of the emission excited at either 295 nm or 310 nm, but homotransfer only contributes to depolarization upon excitation at 295 nm. Hence, the 310/295 polarization ratio gives an indication of tryptophan to tryptophan energy transfer. In single tryptophan systems, the 310/295 ratios are generally below 2 whereas in multi-tryptophan systems, the 310/295 ratios can be greater than 3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:jopc.0000016261.97474.2e | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.
View Article and Find Full Text PDFChemSusChem
January 2025
Universita degli Studi di Ferrara, Dipartimento di Scienze Chimiche e Farmaceutiche, Via Borsari 46, 44121, Ferrara, ITALY.
Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, Uppsala SE-75120, Sweden.
[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Surface Waters-Research and Management, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
The primary production of fjords across the Arctic and Subarctic is undergoing significant transformations due to the climatically driven retreat of glaciers and ice sheets. However, the implications of these changes for upper trophic levels remain largely unknown. In this study, we employ both bulk and compound-specific stable isotope analyses to investigate how shifts at the base of fjord food webs impact the carbon and energy sources of consumers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!