Recent studies have supported a functional role for the transforming growth factor beta-1 (TGF-beta1) and fibro-blast growth factor 2 (FGF-2) signaling cascades in the process of mouse cranial suture fusion. TGF-beta1 and FGF-2 protein expression have been shown to be elevated in the fusing posterior frontal suture versus the nonfusing sagittal suture. The authors evaluated simultaneous mRNA expression of TGF-beta1 and its R1 receptor and FGF-2 and its R2 receptor during mouse cranial suture fusion. They evaluated the suture mesenchyme-dura complex separately from the underlying brain to determine whether there is tissue-specific biologic activity (i.e., brain versus suture mesenchyme-dura) for each cytokine and receptor. Data were collected from 150 male CD-1 mice studied over five time periods from postnatal days 22 to 45. They utilized reverse-transcriptase polymerase chain reaction as a means to detect TGF-beta1, TGF-beta receptor 1 (TGF-betaR1), FGF-2, and FGF receptor 2 (FGFR2) mRNA expression in mouse cranial tissues, beginning with the period of initiation of posterior frontal cranial suture fusion (postnatal day 22) and extending through completion of posterior frontal suture fusion (postnatal day 45). Expression of FGF-2 was significantly greater in posterior frontal suture mesenchyme and dura compared with sagittal suture mesenchyme and dura during the period of initiation of posterior frontal suture fusion, localizing this cytokine's expression to posterior frontal suture mesenchyme and dura during the process of cranial suture fusion. TGF-beta1 and FGFR2 mRNA expression was found to be up-regulated in posterior frontal suture mesenchyme and dura relative to the underlying brain tissue throughout the study period, whereas TGF-betaR1 and FGF-2 mRNA expression was significantly elevated relative to the underlying brain only at time points corresponding to the initiation of posterior frontal suture fusion (between postnatal days 22 and 31). These results indicate that there is tissue-specific mRNA expression of TGF-beta1, FGF-2, and their receptors between suture mesenchyme and dura and the underlying brain, which correlates with the period of posterior frontal suture fusion in the mouse model. Differences in gene expression between suture mesenchyme and dura relative to the underlying brain may be an important regulator of cranial suture biology. Understanding these differences may eventually help to identify possible targets and time windows by which to most effectively modulate cranial suture fusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.prs.0000117362.33347.43 | DOI Listing |
J Anat
January 2025
Department of Anthropology, Stony Brook University, Stony Brook, New York, USA.
Anterior-posterior (A-P) elongation of the palate is a critical aspect of integrated midfacial morphogenesis. Reciprocal epithelial-mesenchymal interactions drive secondary palate elongation that is coupled to the periodic formation of signaling centers within the rugae growth zone (RGZ). However, the relationship between RGZ-driven morphogenetic processes, the differentiative dynamics of underlying palatal bone mesenchymal precursors, and the segmental organization of the upper jaw has remained enigmatic.
View Article and Find Full Text PDFCleft Palate Craniofac J
January 2025
Division of Plastic and Reconstructive Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
Craniosynostosis, a condition marked by the premature fusion of one or more cranial sutures, exhibits diverse phenotypes. This study aims to advance the understanding of these phenotypes beyond the conventional 2-dimensional analysis by focusing on identifying indicators of increased intracranial pressure (ICP) such as bony thinning or irregularities in skull morphology. A retrospective review was conducted for all pediatric patients with midline craniosynostosis who presented to our tertiary academic center for evaluation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Ophthalmology, Dr. Soetomo General and Academic Hospital, Surabaya, East Java, Indonesia.
Background: Craniosynostosis may result in malformations of the orbit, which can be observed in clinical presentations. Craniosynostosis impairs the normal growth of the skull, which typically occurs perpendicular to the fused suture. Craniosynostosis is classified into non-syndromic and syndromic, with an incidence of 1: 2000-2500 live births.
View Article and Find Full Text PDFDevelopment
January 2025
Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.
The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, and Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study, we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!