We showed previously that dietary antioxidant depletion enhances tumor reactive oxygen species (ROS) and apoptosis, resulting in a reduction in brain tumor size in the TgT(121) transgenic mouse model, a nonmetastatic tumor model. Here, in a transgenic mouse model of mammary tumorigenesis with defined rates of tumor growth and lung-targeted metastasis, we determined the ability of dietary antioxidant depletion to inhibit tumor growth and metastasis. Compared with control mice fed a standard diet, antioxidant-depleted mice exhibited tumor-targeted generation of ROS manifested by increased levels of oxidatively modified DNA/RNA (8- hydroxy-2'-deoxyguanine, 8-hydroxyguanine) and lipid peroxidation (4-hydroxy-2-nonenal) in primary and metastatic tumor foci. In addition to increased tumor-targeted ROS, the number of apoptotic cells was increased approximately 500% (P < 0.01) and terminal dUTP nucleotide DNA end-labeling-positive cells 200% (P < 0.01) in mice fed the antioxidant-depleted diet, whereas the percentage of tumor cells undergoing mitosis was >50% lower than in controls (P < 0.01). The proportional distribution of small (<1.5 cm) and large (> or = 1.5 cm) primary mammary tumors differed. The mice fed the antioxidant-depleted diet had more small primary tumors (P <0.05) and fewer large primary tumors (P < 0.05). Importantly, they also had fewer lung metastatic tumor foci compared with mice fed the control diet (4.5 +/- 1.3 vs. 15.8 +/- 8.5 foci/lung, P < 0.01). These findings may be important in understanding the role of dietary antioxidant vitamins in tumor growth and metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/134.5.1139DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
mice fed
12
tumor
8
growth metastasis
8
dietary antioxidant
8
antioxidant depletion
8
transgenic mouse
8
mouse model
8
fed antioxidant-depleted
8
antioxidant-depleted diet
8

Similar Publications

Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.

Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.

View Article and Find Full Text PDF

Background: Radiation-induced sarcoma (RIS) is an exceptionally rare occurrence following radiation therapy, and manifestation usually occurs after a several-year latency period. Herein, the authors report the development of a radiation-induced osteosarcoma of the frontoparietal calvaria following treatment for an oligodendroglioma in an 84-year-old woman.

Observations: The patient had been diagnosed with a grade III anaplastic oligodendroglioma when she was 78 years old.

View Article and Find Full Text PDF

Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!