A novel mechanism of intragenic complementation between Phe to Ala calmodulin mutations.

J Biochem

Bio-Mimetic Control Research Center, The Institute of Physical and Chemical Research, RIKEN, 2271-130 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi 463-0003.

Published: March 2004

AI Article Synopsis

Article Abstract

Calmodulin (CaM) performs essential functions in cell proliferation in Saccharomyces cerevisiae. Previously, we isolated fourteen temperature-sensitive Phe-to-Ala mutations of the CaM-encoding gene CMD1. These mutations were classified into four intragenic complementation groups, suggesting that each group represents a loss of CaM interaction with its specific essential target protein. Nuf1p/Spc110p, one of the essential targets, is a spindle pole body component that is required for proper mitosis. We investigated which intragenic complementation group of CaM represents the malfunction of Nuf1p. Immunoprecipitation analysis showed that two cmd1 mutations belonging to two distinct intragenic complementation groups had the most severely impaired complex formation with Nuf1p at the restrictive temperature. The temperature-sensitive growth of these cmd1 mutants was suppressed by a CaM-independent dominant allele of NUF1. Additionally, these mutants displayed characteristic mitotic defects: an increased ratio of artificial chromosome loss, which could be suppressed by the CaM-independent dominant allele of NUF1, and aberrant microtubule structures. These results indicate that these cmd1 mutants display the temperature-sensitive growth due to the compromised interaction with Nuf1p. However, the interaction was restored in a heterozygous diploid of the two cmd1 alleles, suggesting that intragenic complementation between these cmd1 alleles occurs by a novel mechanism, whereby co-presence of both mutant proteins rescues the interaction with Nuf1p.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvh035DOI Listing

Publication Analysis

Top Keywords

intragenic complementation
20
novel mechanism
8
cmd1 mutations
8
complementation groups
8
temperature-sensitive growth
8
cmd1 mutants
8
suppressed cam-independent
8
cam-independent dominant
8
dominant allele
8
allele nuf1
8

Similar Publications

DNA phenotyping and mapping intragenic deletion mutations in Fanconi anemia: Patterns and diagnostic inferences.

J Genet Eng Biotechnol

December 2024

Medical Molecular Genetics Dpt., Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt. Electronic address:

Background: Fanconi anemia is a genetically heterogeneous recessive disorder distinguished by cytogenetic instability, hypersensitivity to DNA crosslinking agents, increased chromosomal breakage, and disturbed DNA repair. To date, Fanconi anemia complementation group (FANC) includes 23 FANC genes identified of which, FANCA gene is the most commonly mutated. The mutation spectrum of the FANCA gene is highly heterogeneous with large intragenic deletions due to Alu elements-mediated recombination.

View Article and Find Full Text PDF

The conserved process of centriole duplication requires establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295, and Asterless/Cep152. Here we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion.

View Article and Find Full Text PDF

Premature ovarian insufficiency is a common form of female infertility affecting up to 4% of women and characterised by amenorrhea with elevated gonadotropin before the age of 40. Oocytes require controlled DNA breakage and repair for homologous recombination and the maintenance of oocyte integrity. Biallelic disruption of the DNA damage repair gene, Fanconi anemia complementation group A (FANCA), is a common cause of Fanconi anaemia, a syndrome characterised by bone marrow failure, cancer predisposition, physical anomalies and POI.

View Article and Find Full Text PDF

Modeling gene-targeted strategies for correction of polycystic kidney disease.

Mol Ther Methods Clin Dev

June 2023

Institut de Recherches Cliniques de Montréal, Faculté de, Médecine, Montreal, QC, Canada.

Autosomal dominant polycystic kidney disease (ADPKD) causes renal cysts and leads to end-stage renal disease in midlife due mainly to gene mutations. Virtually no studies have explored gene therapeutic strategies for long-term effective treatment of PKD. Toward this aim, the severely cystic -null mouse model was targeted with a series of transgene transfers using genomic under its regulatory elements (), a kidney-targeted gene (), or .

View Article and Find Full Text PDF

Elucidating signal transduction mechanisms of innate immune pathways is essential to defining how they elicit distinct cellular responses. Toll-like receptors (TLR) signal through their cytoplasmic TIR domains which bind other TIR domain-containing adaptors. dSARM/SARM1 is one such TIR domain adaptor best known for its role as the central axon degeneration trigger after injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!