The pharmacological properties, regional distribution and autoradiographic localization of [3H]ryanodine binding sites were examined in postmortem human brain. Analyses of binding data from labeled ryanodine titration experiments conducted in frontal cortex revealed a single class of high affinity binding sites with a Kd value of 3.6 nM and a Bmax value of 99 fmol/mg protein. In unlabeled ryanodine titration experiments, Kd and Bmax values were 6.5 nM and 132 fmol/mg protein, respectively. Binding was found to be dependent on free Ca2+ (ED50 value, 89 microM) and was decreased by 35% in the presence of 5 mM Mg2+. This Mg2+ inhibition was abolished by the addition of 10 mM caffeine. Analysis of the regional distribution of [3H]ryanodine binding in membrane preparations revealed high levels of sites in putamen and caudate nucleus, intermediate levels in hippocampus and cortex, and low levels in cerebellum. Autoradiographically, the hippocampus displayed a high density of binding sites in the CA3 region and the dentate gyrus. Ryanodine binding sites in human brain exhibit similar, but not identical binding and pharmacological characteristics to ryanodine receptors previously identified in muscle and more recently in rat and rabbit brain and accordingly may be involved in the regulation of intracellular calcium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-8993(92)91235-7 | DOI Listing |
Virol J
January 2025
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.
Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.
View Article and Find Full Text PDFCell Signal
January 2025
Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Hepatic stellate cells (HSCs) are the central link of the occurrence and development of hepatic fibrosis, and autophagy promotes HSCs activation. N6-methyladenosine (m6A) RNA modification can also control autophagy by targeting selected autophagy-associated genes. but up to now, little research has been done on the m6A modification autophagy-related genes (ATGs) in hepatic fibrosis.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
NiPERA, Durham, North Carolina, USA.
Environmental Quality Standards (EQS) derived under the European Water Framework Directive are legally binding and enshrined in individual European Member State Country national legislation. These EQS are derived following well-established guidance documents. In 2013, EQS for nickel were derived for freshwaters to be protective against long and short-term exposures, at 4 and 34 µg L-1, respectively.
View Article and Find Full Text PDFPLoS One
January 2025
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!