Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme.

Chem Biol

Department of Biochemistry, McMaster University, Hamilton, Canada.

Published: January 2004

We conducted 16 parallel in vitro selection experiments to isolate catalytic DNAs from a common DNA library for the cleavage of all 16 possible dinucleotide junctions of RNA incorporated into a common DNA/RNA chimeric substrate sequence. We discovered hundreds of sequence variations of the 8-17 deoxyribozyme--an RNA-cleaving catalytic DNA motif previously reported--from nearly all 16 final pools. Sequence analyses identified four absolutely conserved nucleotides in 8-17. Five representative 8-17 variants were tested for substrate cleavage in trans, and together they were able to cleave 14 dinucleotide junctions. New 8-17 variants required Mn2+ to support their broad dinucleotide cleavage capabilities. We hypothesize that 8-17 has a tertiary structure composed of an enzymatic core executing catalysis and a structural facilitator providing structural fine tuning when different dinucleotide junctions are given as cleavage sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2003.12.012DOI Listing

Publication Analysis

Top Keywords

dinucleotide junctions
12
8-17 variants
8
8-17
6
dinucleotide
5
cleavage
5
dinucleotide junction
4
junction cleavage
4
cleavage versatility
4
versatility 8-17
4
8-17 deoxyribozyme
4

Similar Publications

The role of the gut microbiota and the nicotinate/nicotinamide pathway in rotenone-induced neurotoxicity.

Curr Res Toxicol

December 2024

Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China.

Rotenone is a natural compound from plants. It is widely used in pesticides because of highly toxic to insects and fish. However, lots of research has reported that rotenone has neurotoxic effects in humans.

View Article and Find Full Text PDF

Gap junction intercellular communications regulates activation of SARM1 and protects against axonal degeneration.

Cell Death Dis

January 2025

State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.

Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.

View Article and Find Full Text PDF

Mouse embryo CoCoPUTs: novel murine transcriptomic-weighted usage website featuring multiple strains, tissues, and stages.

BMC Bioinformatics

September 2024

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration (FDA), Silver Spring, MD, USA.

Mouse (Mus musculus) models have been heavily utilized in developmental biology research to understand mammalian embryonic development, as mice share many genetic, physiological, and developmental characteristics with humans. New explorations into the integration of temporal (stage-specific) and transcriptional (tissue-specific) data have expanded our knowledge of mouse embryo tissue-specific gene functions. To better understand the substantial impact of synonymous mutational variations in the cell-state-specific transcriptome on a tissue's codon and codon pair usage landscape, we have established a novel resource-Mouse Embryo Codon and Codon Pair Usage Tables (Mouse Embryo CoCoPUTs).

View Article and Find Full Text PDF

NAD overconsumption by poly (ADP-ribose) polymerase (PARP) under oxidative stress induces cytoskeletal disruption in vascular endothelial cell.

Biochem Biophys Res Commun

October 2024

DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan. Electronic address:

Vascular endothelial cytoskeletal disruption leads to increased vascular permeability and is involved in the pathogenesis and progression of various diseases. Oxidative stress can increase vascular permeability by weakening endothelial cell-to-cell junctions and decrease intracellular nicotinamide adenine dinucleotide (NAD) levels. However, it remains unclear how intracellular NAD variations caused by oxidative stress alter the vascular endothelial cytoskeletal organization.

View Article and Find Full Text PDF

Background: Ureteropelvic junction obstruction (UPJO) is the most common cause of pediatric congenital hydronephrosis, and continuous kidney function monitoring plays a role in guiding the treatment of UPJO. In this study, we aimed to explore the differentially expressed proteins (DEPs) in the urinary extracellular vesicles(uEVs) of children with UPJO and determine potential biomarkers of uEVs proteins that reflect kidney function changes.

Methods: Preoperative urine samples from 6 unilateral UPJO patients were collected and divided into two groups: differential renal function (DRF) ≥ 40% and DRF < 40%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!