Distribution of phthalate esters in a marine aquatic food web: comparison to polychlorinated biphenyls.

Environ Sci Technol

School of Resource and Environmental Management, Faculty of Applied Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.

Published: April 2004

AI Article Synopsis

  • *This study analyzed the distribution of 8 types of DPEs and 5 commercial isomeric mixtures across 18 marine species, spanning multiple trophic levels.
  • *Findings indicated that low and intermediate molecular weight DPEs did not follow a pattern of bioaccumulation like PCBs, whereas high-molecular-weight DPEs showed a decline in concentrations with increasing trophic levels.

Article Abstract

Dialkyl phthalate esters (DPEs) are widely used chemicals, with over 4 million tonnes being produced worldwide each year. On the basis of their octanol-water partition coefficients (Kow), which range from 10(1.61) for dimethyl phthalate to 10(9.46) for di-iso-decyl phthalate, certain phthalate esters have the potential to bioconcentrate and biomagnify in aquatic food webs. However, there are no reported field studies on the trophodynamics of phthalate ester in aquatic food webs. This study reports the distribution of 8 individual phthalate esters (i.e., dimethyl, diethyl, di-isobutyl, di-n-butyl, butylbenzyl, di(2-ethylhexyl), di-n-octyl, and di-n-nonyl) and 5 commercial isomeric mixtures (i.e., di-iso-hexyl (C6), di-iso-heptyl (C7), di-iso-octyl (C8), di-iso-nonyl (C9), and di-iso-decyl (C10)) in a marine aquatic food web. DPE concentrations were determined in 18 marine species, representing approximately 4 trophic levels. Co-analysis of DPEs and 6 PCB congeners (i.e., PCB-18, 99, 118, 180, 194, and 209) in all samples produced a direct comparison of the bioaccumulation behavior of PCBs and DPEs. Lipid equivalent concentrations of the PCBs increased with increasing trophic position and stable isotope ratios (delta15N). The Food-Web Magnification Factor (FWMF) of the PCB congeners ranged from 1.8 to 9.5. Lipid equivalent concentrations of low and intermediate molecular weight DPEs (i.e., C1-C7 DPEs: dimethyl, diethyl, di-iso-butyl, di-n-butyl, benzylbutyl, and C6 and C7 isomers) did not exhibit statistically significant trends with trophic position or stable nitrogen isotope ratios (delta15N) in the food web and FWMFs were not significantly different from 1. Lipid equivalent concentrations of the high-molecular-weight DPEs (i.e., C8-C10 DPEs: di(2-ethylhexyl), di-n-octyl, di-n-nonyl, C8, C9, and C10) declined significantly with increasing trophic position and stable isotope ratios (delta15N), producing FWMFs between 0.25 and 0.48. These results show that all DPEs tested did not biomagnify in the studied aquatic food web whereas PCBs did biomagnify.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es034745rDOI Listing

Publication Analysis

Top Keywords

aquatic food
20
phthalate esters
16
food web
16
lipid equivalent
12
equivalent concentrations
12
trophic position
12
position stable
12
isotope ratios
12
ratios delta15n
12
marine aquatic
8

Similar Publications

Animals can use specific environmental cues to make informed decisions about whether and where to disperse. Patch conditions are known to affect the dispersal behavior of animals, but empirical studies investigating the impact of resource diversity on the dispersal of closely related species are largely lacking. In this study, we investigated how food diversity affects the dispersal behavior of three co-occurring cryptic species of the marine bacterivorous nematode complex (Pm I, Pm III and Pm IV).

View Article and Find Full Text PDF

Piscine orthoreovirus-1 and 3 (PRV-1, PRV-3) cause highly prevalent infection in cultured salmonids and can induce heart and skeletal muscle inflammation (HSMI) resulting in economic losses in aquaculture. However, to date, PRV-1 and PRV-3 have withstood replication in continuous cell lines. In this study, we used beating heart cell cultures obtained from different developmental stages of rainbow trout (Oncorhynchus mykiss) (RTC-L and RTC-A) and tested their ability to sustain replication of PRV-1 and PRV-3.

View Article and Find Full Text PDF

Currently, deacetylated chitin (chitosan) nanoparticles (CNPs) are successfully utilized in aquaculture practices. This trial demonstrates the efficacy of CNPs in combating diazinon (DZN) toxicity in African catfish, Clarias gariepinus, via monitoring hepato-renal function, serum immune trait, hormonal function, and hepato-renal antioxidant activity. Four groups were allocated as follows: a control group, a CNPs group (0.

View Article and Find Full Text PDF

This investigation looked at the ameliorative role of camel whey protein hydrolysates-diet (PH) in Oreochromis niloticus stocked under alkaline conditions. One hundred sixty fish (16.02 ± 0.

View Article and Find Full Text PDF

Riparian spiders are used in ecotoxicology as sentinels of bioavailable contaminants that are transferred from aquatic to terrestrial habitats via emergent aquatic insects. Spiders in the family Tetragnathidae are particularly of interest because a high proportion of their diet consists of emergent aquatic insects and their contaminant loads reflect the amount transferred through the food web to riparian predators. The transfer of contaminants can be determined through food web tracers such as stable isotopes and polyunsaturated fatty acids; however, it is unclear how contaminants and tracers vary over the course of a year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!