Myelination in the hippocampus during development and following lesion.

Cell Mol Life Sci

Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité University Medical School Berlin, Philippstr. 12, 10115, Berlin, Germany.

Published: May 2004

Myelin is crucial for the stabilization of axonal projections in the developing and adult mammalian brain. However, myelin components also act as a non-permissive and repellent substrate for outgrowing axons. Therefore, one major factor which accounts for the lack of axonal regeneration in the mature brain is myelin. Here we report on the appearance of mature, fully myelinated axons during hippocampal development and following entorhinal lesion with the myelin-specific marker Black Gold. Although entorhinal axons enter the hippocampal formation at embryonic day 17, light and ultrastructural analysis revealed that mature myelinated fibers in the hippocampus occur in the second postnatal week. During postnatal development, increasing numbers of myelinated fibers appear and the distribution of myelinated fibers at postnatal day 25 was similar to that found in the adult. After entorhinal cortex lesion, a specific anterograde denervation in the hippocampus takes place, accompanied by a long-lasting loss of myelin. Quantitative analysis of myelin and myelin breakdown products at different time points after lesion revealed a temporally close correlation to the degeneration and reorganization pha-ses in the hippocampus. In contrast, electroconvulsive seizures resulted in brief demyelination and a faster recovery time course. In conclusion, we could show that the appearance of mature axons in the hippocampus is temporally regulated during development. In the adult hippocampus, demyelination was found after anterograde degeneration and also following seizures, suggesting that independent types of insult lead to demyelination. Reappearing mature axons were found in the hippocampus following axonal sprouting. Therefore, our quantitative analysis of mature axons and myelination effectively reflects the readjusted axonal density and possible electrophysiological balance following lesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138720PMC
http://dx.doi.org/10.1007/s00018-004-3469-5DOI Listing

Publication Analysis

Top Keywords

myelinated fibers
12
mature axons
12
brain myelin
8
appearance mature
8
quantitative analysis
8
axons hippocampus
8
myelin
6
axons
6
mature
6
hippocampus
6

Similar Publications

Aims: Alexander disease (AxD) is a leukodystrophy caused by mutations in the astrocytic filament gene GFAP. There are currently no effective treatments for AxD. Previous studies have rarely established AxD models with the patient's original GFAP mutations.

View Article and Find Full Text PDF

Spontaneous muscle activity in multifocal motor neuropathy - Insights from axonal excitability testing.

Clin Neurophysiol

January 2025

Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine and Neuroscience, University of Copenhagen, Denmark; Department of Neurology, Rigshospitalet, Copenhagen, Denmark.

Objective: To investigate motor axonal excitability in multifocal motor neuropathy (MMN) associated with involuntary muscle activity.

Methods: Two MMN patients with continuous involuntary finger movements (MMNifm) were compared to 11 patients without movements (MMNnfm). Clinical examination, EMG of the abductor pollicis brevis muscle, nerve conduction studies, motor unit number estimation, excitability studies, and mathematical modeling were conducted in the patients with MMN and compared to controls.

View Article and Find Full Text PDF

In light of the increasing importance for measuring myelin ratios - the ratio of axon-to-fiber (axon + myelin) diameters in myelin internodes - to understand normal physiology, disease states, repair mechanisms and myelin plasticity, there is urgent need to minimize processing and statistical artifacts in current methodologies. Many contemporary studies fall prey to a variety of artifacts, reducing study outcome robustness and slowing development of novel therapeutics. Underlying causes stem from a lack of understanding of the myelin ratio, which has persisted more than a century.

View Article and Find Full Text PDF

Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain.

View Article and Find Full Text PDF

Background: Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!