The structural stabilization role of carotenoids in the formation of photosynthetic pigment-protein complexes is investigated theoretically. The pi-pi stacking and CH-pi interactions between beta-carotenes and their surrounding chlorophylls (and/or aromatic residues) in Photosystem I (PS1) from the cyanobacterium Synechococcus elongatus were studied by means of the supermolecular approach at the level of the second-order Møller-Plesset perturbation method. PS1 features a core integral antenna system consisting of 22 beta-carotenes intertwined with 90 chlorophyll molecules. The binding environments of all 22 beta-carotenes were systematically analyzed. For 21 out of the 22 cases, one or more chlorophyll molecules exist within van der Waals' contacts of the beta-carotene molecule. The calculated strengths of pi-pi stacking interactions between the conjugated core of beta-carotene and the aromatic tetrapyrrole rings of chlorophyll are substantial, ranging from -3.54 kcal/mol for the perpendicular-positioned BCR4004...CHL1217 pair to -16.01 kcal/mol for the parallel-oriented BCR4007...CHL1122 pair. A strong dependence of the pi-pi stacking interaction energies on the intermolecular configurations of the two interacting pi-planes is observed. The parallel-oriented beta-carotene and chlorophyll pair is energetically much more stable than the perpendicular-positioned pair. The larger the extent of pi-pi overlapping, the stronger the interaction strength. In many cases, the beta-ring ends of beta-carotene molecules are found to interact with the tetrapyrrole rings of chlorophyll via CH-pi interactions. For the latter interactions, the calculated interaction strengths vary from -7.03 to -11.03 kcal/mol, depending on the intermolecular configuration. This work leads to the conclusion that pi-pi stacking and CH-pi interactions between beta-carotene and their surrounding chlorophylls and aromatic residues play an essential role in binding beta-carotenes in PS1 from S. elongatus. Consequently, the molecular basis of the structural stabilization function of carotenoids in formation of the photosynthetic pigment-protein complexes is established.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304175PMC
http://dx.doi.org/10.1016/S0006-3495(04)74358-1DOI Listing

Publication Analysis

Top Keywords

pi-pi stacking
16
ch-pi interactions
12
role carotenoids
8
structural stabilization
8
carotenoids formation
8
formation photosynthetic
8
photosynthetic pigment-protein
8
pigment-protein complexes
8
stacking ch-pi
8
surrounding chlorophylls
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!