Background: We describe a multistep model of cancer genetic counselling designed to promote awareness, and disease surveillance and preventive measures for hereditary and familial breast and ovarian cancer.
Patients And Methods: Step T0 of the model entails information giving; this is followed by pedigree analysis and risk estimation (T1), risk communication and genetic testing (T2), and genetic test result communication (T3). User consent was required to proceed from one step to the next. Surveillance and preventive measures are proposed to at-risk users. Of the 311 subjects who requested cancer genetic counselling, consent data to each counselling step were available for 295: 93 were disease-free, 187 had breast cancer, 12 had ovarian cancer and three had breast plus ovarian cancer.
Results: Consent was high at T0 (98.39%), T1 (96.40%) and T2 (99.65%). Consent decreased at the crucial points of counselling: T2 (87.71%) and T3 [genetic test result communication (85.08%), and extension of counselling to and testing of relatives (65.36%)].
Conclusions: The model fosters the user's knowledge about cancer and favours identification of at-risk subjects. Furthermore, by promoting awareness about genetic testing and surveillance measures, the algorithm enables users to make a fully informed choice of action in case of predisposing or familial cancer risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annonc/mdh183 | DOI Listing |
Stem Cell Res Ther
January 2025
Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain.
This review aims to summarize recent studies and findings within adoptive cell therapies, including tumor-infiltrating lymphocytes, genetically engineered T cell receptors, and chimeric antigen receptor T cells, in the treatment of thoracic malignancies, including non-small cell lung cancer, small cell lung cancer, and malignant pleural mesothelioma. Several trials are ongoing, and a few have reported results, suggesting that adoptive cell therapies may represent a potential treatment option for these patients, especially when checkpoint inhibition has failed. We also discuss the potential implementation of these therapies, as they present a new toxicity profile and an intrinsic financial burden.
View Article and Find Full Text PDFNat Immunol
January 2025
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.
View Article and Find Full Text PDFInvest New Drugs
January 2025
Center for Biomedical Sciences, Wakayama Medical University, Wakayama, Japan.
The impact of clinical stage on the effectiveness of osimertinib for epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) remains unexamined. We investigated osimertinib therapeutic efficacy variation between stage IVA or lower and stage IVB EGFR mutation-positive lung cancers, focusing on differences in pretreatment co-occurring genetic alterations in circulating tumor DNA. This was a secondary analysis of the ELUCIDATOR study, a multicenter prospective observational study in Japan that assessed the mechanisms underlying resistance to osimertinib as a first-line treatment for advanced NSCLC with EGFR mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!